64bit IEEE 754: Decimal ↗ Double Precision Floating Point Binary: 0.428 571 6 Convert the Number to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number

Number 0.428 571 6(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. First, convert to binary (in base 2) the integer part: 0.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 0 ÷ 2 = 0 + 0;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


0(10) =


0(2)


3. Convert to binary (base 2) the fractional part: 0.428 571 6.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.428 571 6 × 2 = 0 + 0.857 143 2;
  • 2) 0.857 143 2 × 2 = 1 + 0.714 286 4;
  • 3) 0.714 286 4 × 2 = 1 + 0.428 572 8;
  • 4) 0.428 572 8 × 2 = 0 + 0.857 145 6;
  • 5) 0.857 145 6 × 2 = 1 + 0.714 291 2;
  • 6) 0.714 291 2 × 2 = 1 + 0.428 582 4;
  • 7) 0.428 582 4 × 2 = 0 + 0.857 164 8;
  • 8) 0.857 164 8 × 2 = 1 + 0.714 329 6;
  • 9) 0.714 329 6 × 2 = 1 + 0.428 659 2;
  • 10) 0.428 659 2 × 2 = 0 + 0.857 318 4;
  • 11) 0.857 318 4 × 2 = 1 + 0.714 636 8;
  • 12) 0.714 636 8 × 2 = 1 + 0.429 273 6;
  • 13) 0.429 273 6 × 2 = 0 + 0.858 547 2;
  • 14) 0.858 547 2 × 2 = 1 + 0.717 094 4;
  • 15) 0.717 094 4 × 2 = 1 + 0.434 188 8;
  • 16) 0.434 188 8 × 2 = 0 + 0.868 377 6;
  • 17) 0.868 377 6 × 2 = 1 + 0.736 755 2;
  • 18) 0.736 755 2 × 2 = 1 + 0.473 510 4;
  • 19) 0.473 510 4 × 2 = 0 + 0.947 020 8;
  • 20) 0.947 020 8 × 2 = 1 + 0.894 041 6;
  • 21) 0.894 041 6 × 2 = 1 + 0.788 083 2;
  • 22) 0.788 083 2 × 2 = 1 + 0.576 166 4;
  • 23) 0.576 166 4 × 2 = 1 + 0.152 332 8;
  • 24) 0.152 332 8 × 2 = 0 + 0.304 665 6;
  • 25) 0.304 665 6 × 2 = 0 + 0.609 331 2;
  • 26) 0.609 331 2 × 2 = 1 + 0.218 662 4;
  • 27) 0.218 662 4 × 2 = 0 + 0.437 324 8;
  • 28) 0.437 324 8 × 2 = 0 + 0.874 649 6;
  • 29) 0.874 649 6 × 2 = 1 + 0.749 299 2;
  • 30) 0.749 299 2 × 2 = 1 + 0.498 598 4;
  • 31) 0.498 598 4 × 2 = 0 + 0.997 196 8;
  • 32) 0.997 196 8 × 2 = 1 + 0.994 393 6;
  • 33) 0.994 393 6 × 2 = 1 + 0.988 787 2;
  • 34) 0.988 787 2 × 2 = 1 + 0.977 574 4;
  • 35) 0.977 574 4 × 2 = 1 + 0.955 148 8;
  • 36) 0.955 148 8 × 2 = 1 + 0.910 297 6;
  • 37) 0.910 297 6 × 2 = 1 + 0.820 595 2;
  • 38) 0.820 595 2 × 2 = 1 + 0.641 190 4;
  • 39) 0.641 190 4 × 2 = 1 + 0.282 380 8;
  • 40) 0.282 380 8 × 2 = 0 + 0.564 761 6;
  • 41) 0.564 761 6 × 2 = 1 + 0.129 523 2;
  • 42) 0.129 523 2 × 2 = 0 + 0.259 046 4;
  • 43) 0.259 046 4 × 2 = 0 + 0.518 092 8;
  • 44) 0.518 092 8 × 2 = 1 + 0.036 185 6;
  • 45) 0.036 185 6 × 2 = 0 + 0.072 371 2;
  • 46) 0.072 371 2 × 2 = 0 + 0.144 742 4;
  • 47) 0.144 742 4 × 2 = 0 + 0.289 484 8;
  • 48) 0.289 484 8 × 2 = 0 + 0.578 969 6;
  • 49) 0.578 969 6 × 2 = 1 + 0.157 939 2;
  • 50) 0.157 939 2 × 2 = 0 + 0.315 878 4;
  • 51) 0.315 878 4 × 2 = 0 + 0.631 756 8;
  • 52) 0.631 756 8 × 2 = 1 + 0.263 513 6;
  • 53) 0.263 513 6 × 2 = 0 + 0.527 027 2;
  • 54) 0.527 027 2 × 2 = 1 + 0.054 054 4;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.428 571 6(10) =


0.0110 1101 1011 0110 1101 1110 0100 1101 1111 1110 1001 0000 1001 01(2)


5. Positive number before normalization:

0.428 571 6(10) =


0.0110 1101 1011 0110 1101 1110 0100 1101 1111 1110 1001 0000 1001 01(2)

6. Normalize the binary representation of the number.

Shift the decimal mark 2 positions to the right, so that only one non zero digit remains to the left of it:


0.428 571 6(10) =


0.0110 1101 1011 0110 1101 1110 0100 1101 1111 1110 1001 0000 1001 01(2) =


0.0110 1101 1011 0110 1101 1110 0100 1101 1111 1110 1001 0000 1001 01(2) × 20 =


1.1011 0110 1101 1011 0111 1001 0011 0111 1111 1010 0100 0010 0101(2) × 2-2


7. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): -2


Mantissa (not normalized):
1.1011 0110 1101 1011 0111 1001 0011 0111 1111 1010 0100 0010 0101


8. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


-2 + 2(11-1) - 1 =


(-2 + 1 023)(10) =


1 021(10)


9. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 021 ÷ 2 = 510 + 1;
  • 510 ÷ 2 = 255 + 0;
  • 255 ÷ 2 = 127 + 1;
  • 127 ÷ 2 = 63 + 1;
  • 63 ÷ 2 = 31 + 1;
  • 31 ÷ 2 = 15 + 1;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1021(10) =


011 1111 1101(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, only if necessary (not the case here).


Mantissa (normalized) =


1. 1011 0110 1101 1011 0111 1001 0011 0111 1111 1010 0100 0010 0101 =


1011 0110 1101 1011 0111 1001 0011 0111 1111 1010 0100 0010 0101


12. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
011 1111 1101


Mantissa (52 bits) =
1011 0110 1101 1011 0111 1001 0011 0111 1111 1010 0100 0010 0101


The base ten decimal number 0.428 571 6 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 011 1111 1101 - 1011 0110 1101 1011 0111 1001 0011 0111 1111 1010 0100 0010 0101

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number -25.39 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 16 21:03 UTC (GMT)
Number 4 295 000 019 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 16 21:02 UTC (GMT)
Number 11 000 000 110 110 000 000 000 000 000 097 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 16 21:02 UTC (GMT)
Number 38 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 16 21:02 UTC (GMT)
Number 1 361 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 16 21:02 UTC (GMT)
Number 3 026.94 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 16 21:02 UTC (GMT)
Number 0.000 000 000 000 000 013 248 735 989 328 012 498 123 389 7 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 16 21:02 UTC (GMT)
Number 1.999 999 99 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 16 21:02 UTC (GMT)
Number 20 537 698 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 16 21:02 UTC (GMT)
Number 115 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 16 21:02 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100