64bit IEEE 754: Decimal ↗ Double Precision Floating Point Binary: 0.300 000 000 000 000 044 408 920 985 006 261 616 945 266 723 68 Convert the Number to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number

Number 0.300 000 000 000 000 044 408 920 985 006 261 616 945 266 723 68(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. First, convert to binary (in base 2) the integer part: 0.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 0 ÷ 2 = 0 + 0;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


0(10) =


0(2)


3. Convert to binary (base 2) the fractional part: 0.300 000 000 000 000 044 408 920 985 006 261 616 945 266 723 68.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.300 000 000 000 000 044 408 920 985 006 261 616 945 266 723 68 × 2 = 0 + 0.600 000 000 000 000 088 817 841 970 012 523 233 890 533 447 36;
  • 2) 0.600 000 000 000 000 088 817 841 970 012 523 233 890 533 447 36 × 2 = 1 + 0.200 000 000 000 000 177 635 683 940 025 046 467 781 066 894 72;
  • 3) 0.200 000 000 000 000 177 635 683 940 025 046 467 781 066 894 72 × 2 = 0 + 0.400 000 000 000 000 355 271 367 880 050 092 935 562 133 789 44;
  • 4) 0.400 000 000 000 000 355 271 367 880 050 092 935 562 133 789 44 × 2 = 0 + 0.800 000 000 000 000 710 542 735 760 100 185 871 124 267 578 88;
  • 5) 0.800 000 000 000 000 710 542 735 760 100 185 871 124 267 578 88 × 2 = 1 + 0.600 000 000 000 001 421 085 471 520 200 371 742 248 535 157 76;
  • 6) 0.600 000 000 000 001 421 085 471 520 200 371 742 248 535 157 76 × 2 = 1 + 0.200 000 000 000 002 842 170 943 040 400 743 484 497 070 315 52;
  • 7) 0.200 000 000 000 002 842 170 943 040 400 743 484 497 070 315 52 × 2 = 0 + 0.400 000 000 000 005 684 341 886 080 801 486 968 994 140 631 04;
  • 8) 0.400 000 000 000 005 684 341 886 080 801 486 968 994 140 631 04 × 2 = 0 + 0.800 000 000 000 011 368 683 772 161 602 973 937 988 281 262 08;
  • 9) 0.800 000 000 000 011 368 683 772 161 602 973 937 988 281 262 08 × 2 = 1 + 0.600 000 000 000 022 737 367 544 323 205 947 875 976 562 524 16;
  • 10) 0.600 000 000 000 022 737 367 544 323 205 947 875 976 562 524 16 × 2 = 1 + 0.200 000 000 000 045 474 735 088 646 411 895 751 953 125 048 32;
  • 11) 0.200 000 000 000 045 474 735 088 646 411 895 751 953 125 048 32 × 2 = 0 + 0.400 000 000 000 090 949 470 177 292 823 791 503 906 250 096 64;
  • 12) 0.400 000 000 000 090 949 470 177 292 823 791 503 906 250 096 64 × 2 = 0 + 0.800 000 000 000 181 898 940 354 585 647 583 007 812 500 193 28;
  • 13) 0.800 000 000 000 181 898 940 354 585 647 583 007 812 500 193 28 × 2 = 1 + 0.600 000 000 000 363 797 880 709 171 295 166 015 625 000 386 56;
  • 14) 0.600 000 000 000 363 797 880 709 171 295 166 015 625 000 386 56 × 2 = 1 + 0.200 000 000 000 727 595 761 418 342 590 332 031 250 000 773 12;
  • 15) 0.200 000 000 000 727 595 761 418 342 590 332 031 250 000 773 12 × 2 = 0 + 0.400 000 000 001 455 191 522 836 685 180 664 062 500 001 546 24;
  • 16) 0.400 000 000 001 455 191 522 836 685 180 664 062 500 001 546 24 × 2 = 0 + 0.800 000 000 002 910 383 045 673 370 361 328 125 000 003 092 48;
  • 17) 0.800 000 000 002 910 383 045 673 370 361 328 125 000 003 092 48 × 2 = 1 + 0.600 000 000 005 820 766 091 346 740 722 656 250 000 006 184 96;
  • 18) 0.600 000 000 005 820 766 091 346 740 722 656 250 000 006 184 96 × 2 = 1 + 0.200 000 000 011 641 532 182 693 481 445 312 500 000 012 369 92;
  • 19) 0.200 000 000 011 641 532 182 693 481 445 312 500 000 012 369 92 × 2 = 0 + 0.400 000 000 023 283 064 365 386 962 890 625 000 000 024 739 84;
  • 20) 0.400 000 000 023 283 064 365 386 962 890 625 000 000 024 739 84 × 2 = 0 + 0.800 000 000 046 566 128 730 773 925 781 250 000 000 049 479 68;
  • 21) 0.800 000 000 046 566 128 730 773 925 781 250 000 000 049 479 68 × 2 = 1 + 0.600 000 000 093 132 257 461 547 851 562 500 000 000 098 959 36;
  • 22) 0.600 000 000 093 132 257 461 547 851 562 500 000 000 098 959 36 × 2 = 1 + 0.200 000 000 186 264 514 923 095 703 125 000 000 000 197 918 72;
  • 23) 0.200 000 000 186 264 514 923 095 703 125 000 000 000 197 918 72 × 2 = 0 + 0.400 000 000 372 529 029 846 191 406 250 000 000 000 395 837 44;
  • 24) 0.400 000 000 372 529 029 846 191 406 250 000 000 000 395 837 44 × 2 = 0 + 0.800 000 000 745 058 059 692 382 812 500 000 000 000 791 674 88;
  • 25) 0.800 000 000 745 058 059 692 382 812 500 000 000 000 791 674 88 × 2 = 1 + 0.600 000 001 490 116 119 384 765 625 000 000 000 001 583 349 76;
  • 26) 0.600 000 001 490 116 119 384 765 625 000 000 000 001 583 349 76 × 2 = 1 + 0.200 000 002 980 232 238 769 531 250 000 000 000 003 166 699 52;
  • 27) 0.200 000 002 980 232 238 769 531 250 000 000 000 003 166 699 52 × 2 = 0 + 0.400 000 005 960 464 477 539 062 500 000 000 000 006 333 399 04;
  • 28) 0.400 000 005 960 464 477 539 062 500 000 000 000 006 333 399 04 × 2 = 0 + 0.800 000 011 920 928 955 078 125 000 000 000 000 012 666 798 08;
  • 29) 0.800 000 011 920 928 955 078 125 000 000 000 000 012 666 798 08 × 2 = 1 + 0.600 000 023 841 857 910 156 250 000 000 000 000 025 333 596 16;
  • 30) 0.600 000 023 841 857 910 156 250 000 000 000 000 025 333 596 16 × 2 = 1 + 0.200 000 047 683 715 820 312 500 000 000 000 000 050 667 192 32;
  • 31) 0.200 000 047 683 715 820 312 500 000 000 000 000 050 667 192 32 × 2 = 0 + 0.400 000 095 367 431 640 625 000 000 000 000 000 101 334 384 64;
  • 32) 0.400 000 095 367 431 640 625 000 000 000 000 000 101 334 384 64 × 2 = 0 + 0.800 000 190 734 863 281 250 000 000 000 000 000 202 668 769 28;
  • 33) 0.800 000 190 734 863 281 250 000 000 000 000 000 202 668 769 28 × 2 = 1 + 0.600 000 381 469 726 562 500 000 000 000 000 000 405 337 538 56;
  • 34) 0.600 000 381 469 726 562 500 000 000 000 000 000 405 337 538 56 × 2 = 1 + 0.200 000 762 939 453 125 000 000 000 000 000 000 810 675 077 12;
  • 35) 0.200 000 762 939 453 125 000 000 000 000 000 000 810 675 077 12 × 2 = 0 + 0.400 001 525 878 906 250 000 000 000 000 000 001 621 350 154 24;
  • 36) 0.400 001 525 878 906 250 000 000 000 000 000 001 621 350 154 24 × 2 = 0 + 0.800 003 051 757 812 500 000 000 000 000 000 003 242 700 308 48;
  • 37) 0.800 003 051 757 812 500 000 000 000 000 000 003 242 700 308 48 × 2 = 1 + 0.600 006 103 515 625 000 000 000 000 000 000 006 485 400 616 96;
  • 38) 0.600 006 103 515 625 000 000 000 000 000 000 006 485 400 616 96 × 2 = 1 + 0.200 012 207 031 250 000 000 000 000 000 000 012 970 801 233 92;
  • 39) 0.200 012 207 031 250 000 000 000 000 000 000 012 970 801 233 92 × 2 = 0 + 0.400 024 414 062 500 000 000 000 000 000 000 025 941 602 467 84;
  • 40) 0.400 024 414 062 500 000 000 000 000 000 000 025 941 602 467 84 × 2 = 0 + 0.800 048 828 125 000 000 000 000 000 000 000 051 883 204 935 68;
  • 41) 0.800 048 828 125 000 000 000 000 000 000 000 051 883 204 935 68 × 2 = 1 + 0.600 097 656 250 000 000 000 000 000 000 000 103 766 409 871 36;
  • 42) 0.600 097 656 250 000 000 000 000 000 000 000 103 766 409 871 36 × 2 = 1 + 0.200 195 312 500 000 000 000 000 000 000 000 207 532 819 742 72;
  • 43) 0.200 195 312 500 000 000 000 000 000 000 000 207 532 819 742 72 × 2 = 0 + 0.400 390 625 000 000 000 000 000 000 000 000 415 065 639 485 44;
  • 44) 0.400 390 625 000 000 000 000 000 000 000 000 415 065 639 485 44 × 2 = 0 + 0.800 781 250 000 000 000 000 000 000 000 000 830 131 278 970 88;
  • 45) 0.800 781 250 000 000 000 000 000 000 000 000 830 131 278 970 88 × 2 = 1 + 0.601 562 500 000 000 000 000 000 000 000 001 660 262 557 941 76;
  • 46) 0.601 562 500 000 000 000 000 000 000 000 001 660 262 557 941 76 × 2 = 1 + 0.203 125 000 000 000 000 000 000 000 000 003 320 525 115 883 52;
  • 47) 0.203 125 000 000 000 000 000 000 000 000 003 320 525 115 883 52 × 2 = 0 + 0.406 250 000 000 000 000 000 000 000 000 006 641 050 231 767 04;
  • 48) 0.406 250 000 000 000 000 000 000 000 000 006 641 050 231 767 04 × 2 = 0 + 0.812 500 000 000 000 000 000 000 000 000 013 282 100 463 534 08;
  • 49) 0.812 500 000 000 000 000 000 000 000 000 013 282 100 463 534 08 × 2 = 1 + 0.625 000 000 000 000 000 000 000 000 000 026 564 200 927 068 16;
  • 50) 0.625 000 000 000 000 000 000 000 000 000 026 564 200 927 068 16 × 2 = 1 + 0.250 000 000 000 000 000 000 000 000 000 053 128 401 854 136 32;
  • 51) 0.250 000 000 000 000 000 000 000 000 000 053 128 401 854 136 32 × 2 = 0 + 0.500 000 000 000 000 000 000 000 000 000 106 256 803 708 272 64;
  • 52) 0.500 000 000 000 000 000 000 000 000 000 106 256 803 708 272 64 × 2 = 1 + 0.000 000 000 000 000 000 000 000 000 000 212 513 607 416 545 28;
  • 53) 0.000 000 000 000 000 000 000 000 000 000 212 513 607 416 545 28 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 425 027 214 833 090 56;
  • 54) 0.000 000 000 000 000 000 000 000 000 000 425 027 214 833 090 56 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 850 054 429 666 181 12;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.300 000 000 000 000 044 408 920 985 006 261 616 945 266 723 68(10) =


0.0100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1101 00(2)


5. Positive number before normalization:

0.300 000 000 000 000 044 408 920 985 006 261 616 945 266 723 68(10) =


0.0100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1101 00(2)

6. Normalize the binary representation of the number.

Shift the decimal mark 2 positions to the right, so that only one non zero digit remains to the left of it:


0.300 000 000 000 000 044 408 920 985 006 261 616 945 266 723 68(10) =


0.0100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1101 00(2) =


0.0100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1101 00(2) × 20 =


1.0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0100(2) × 2-2


7. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): -2


Mantissa (not normalized):
1.0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0100


8. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


-2 + 2(11-1) - 1 =


(-2 + 1 023)(10) =


1 021(10)


9. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 021 ÷ 2 = 510 + 1;
  • 510 ÷ 2 = 255 + 0;
  • 255 ÷ 2 = 127 + 1;
  • 127 ÷ 2 = 63 + 1;
  • 63 ÷ 2 = 31 + 1;
  • 31 ÷ 2 = 15 + 1;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1021(10) =


011 1111 1101(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, only if necessary (not the case here).


Mantissa (normalized) =


1. 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0100 =


0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0100


12. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
011 1111 1101


Mantissa (52 bits) =
0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0100


The base ten decimal number 0.300 000 000 000 000 044 408 920 985 006 261 616 945 266 723 68 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 011 1111 1101 - 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0100

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 44 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 18 22:19 UTC (GMT)
Number 44 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 18 22:19 UTC (GMT)
Number 1 002 370 797 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 18 22:19 UTC (GMT)
Number 100 000 001 010 001 010 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 18 22:18 UTC (GMT)
Number 100 001 101 000 985 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 18 22:18 UTC (GMT)
Number 16 521 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 18 22:18 UTC (GMT)
Number 35 115 652 612 026 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 18 22:18 UTC (GMT)
Number 35 165 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 18 22:18 UTC (GMT)
Number -528 353 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 18 22:18 UTC (GMT)
Number -31.74 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 18 22:17 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100