Convert the Number 0.000 000 000 041 21 to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number. Detailed Explanations

Number 0.000 000 000 041 21(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (to base 2) the integer part of the number.

Convert to binary the fractional part of the number.


1. First, convert to binary (in base 2) the integer part: 0.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 0 ÷ 2 = 0 + 0;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


0(10) =


0(2)


3. Convert to binary (base 2) the fractional part: 0.000 000 000 041 21.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.000 000 000 041 21 × 2 = 0 + 0.000 000 000 082 42;
  • 2) 0.000 000 000 082 42 × 2 = 0 + 0.000 000 000 164 84;
  • 3) 0.000 000 000 164 84 × 2 = 0 + 0.000 000 000 329 68;
  • 4) 0.000 000 000 329 68 × 2 = 0 + 0.000 000 000 659 36;
  • 5) 0.000 000 000 659 36 × 2 = 0 + 0.000 000 001 318 72;
  • 6) 0.000 000 001 318 72 × 2 = 0 + 0.000 000 002 637 44;
  • 7) 0.000 000 002 637 44 × 2 = 0 + 0.000 000 005 274 88;
  • 8) 0.000 000 005 274 88 × 2 = 0 + 0.000 000 010 549 76;
  • 9) 0.000 000 010 549 76 × 2 = 0 + 0.000 000 021 099 52;
  • 10) 0.000 000 021 099 52 × 2 = 0 + 0.000 000 042 199 04;
  • 11) 0.000 000 042 199 04 × 2 = 0 + 0.000 000 084 398 08;
  • 12) 0.000 000 084 398 08 × 2 = 0 + 0.000 000 168 796 16;
  • 13) 0.000 000 168 796 16 × 2 = 0 + 0.000 000 337 592 32;
  • 14) 0.000 000 337 592 32 × 2 = 0 + 0.000 000 675 184 64;
  • 15) 0.000 000 675 184 64 × 2 = 0 + 0.000 001 350 369 28;
  • 16) 0.000 001 350 369 28 × 2 = 0 + 0.000 002 700 738 56;
  • 17) 0.000 002 700 738 56 × 2 = 0 + 0.000 005 401 477 12;
  • 18) 0.000 005 401 477 12 × 2 = 0 + 0.000 010 802 954 24;
  • 19) 0.000 010 802 954 24 × 2 = 0 + 0.000 021 605 908 48;
  • 20) 0.000 021 605 908 48 × 2 = 0 + 0.000 043 211 816 96;
  • 21) 0.000 043 211 816 96 × 2 = 0 + 0.000 086 423 633 92;
  • 22) 0.000 086 423 633 92 × 2 = 0 + 0.000 172 847 267 84;
  • 23) 0.000 172 847 267 84 × 2 = 0 + 0.000 345 694 535 68;
  • 24) 0.000 345 694 535 68 × 2 = 0 + 0.000 691 389 071 36;
  • 25) 0.000 691 389 071 36 × 2 = 0 + 0.001 382 778 142 72;
  • 26) 0.001 382 778 142 72 × 2 = 0 + 0.002 765 556 285 44;
  • 27) 0.002 765 556 285 44 × 2 = 0 + 0.005 531 112 570 88;
  • 28) 0.005 531 112 570 88 × 2 = 0 + 0.011 062 225 141 76;
  • 29) 0.011 062 225 141 76 × 2 = 0 + 0.022 124 450 283 52;
  • 30) 0.022 124 450 283 52 × 2 = 0 + 0.044 248 900 567 04;
  • 31) 0.044 248 900 567 04 × 2 = 0 + 0.088 497 801 134 08;
  • 32) 0.088 497 801 134 08 × 2 = 0 + 0.176 995 602 268 16;
  • 33) 0.176 995 602 268 16 × 2 = 0 + 0.353 991 204 536 32;
  • 34) 0.353 991 204 536 32 × 2 = 0 + 0.707 982 409 072 64;
  • 35) 0.707 982 409 072 64 × 2 = 1 + 0.415 964 818 145 28;
  • 36) 0.415 964 818 145 28 × 2 = 0 + 0.831 929 636 290 56;
  • 37) 0.831 929 636 290 56 × 2 = 1 + 0.663 859 272 581 12;
  • 38) 0.663 859 272 581 12 × 2 = 1 + 0.327 718 545 162 24;
  • 39) 0.327 718 545 162 24 × 2 = 0 + 0.655 437 090 324 48;
  • 40) 0.655 437 090 324 48 × 2 = 1 + 0.310 874 180 648 96;
  • 41) 0.310 874 180 648 96 × 2 = 0 + 0.621 748 361 297 92;
  • 42) 0.621 748 361 297 92 × 2 = 1 + 0.243 496 722 595 84;
  • 43) 0.243 496 722 595 84 × 2 = 0 + 0.486 993 445 191 68;
  • 44) 0.486 993 445 191 68 × 2 = 0 + 0.973 986 890 383 36;
  • 45) 0.973 986 890 383 36 × 2 = 1 + 0.947 973 780 766 72;
  • 46) 0.947 973 780 766 72 × 2 = 1 + 0.895 947 561 533 44;
  • 47) 0.895 947 561 533 44 × 2 = 1 + 0.791 895 123 066 88;
  • 48) 0.791 895 123 066 88 × 2 = 1 + 0.583 790 246 133 76;
  • 49) 0.583 790 246 133 76 × 2 = 1 + 0.167 580 492 267 52;
  • 50) 0.167 580 492 267 52 × 2 = 0 + 0.335 160 984 535 04;
  • 51) 0.335 160 984 535 04 × 2 = 0 + 0.670 321 969 070 08;
  • 52) 0.670 321 969 070 08 × 2 = 1 + 0.340 643 938 140 16;
  • 53) 0.340 643 938 140 16 × 2 = 0 + 0.681 287 876 280 32;
  • 54) 0.681 287 876 280 32 × 2 = 1 + 0.362 575 752 560 64;
  • 55) 0.362 575 752 560 64 × 2 = 0 + 0.725 151 505 121 28;
  • 56) 0.725 151 505 121 28 × 2 = 1 + 0.450 303 010 242 56;
  • 57) 0.450 303 010 242 56 × 2 = 0 + 0.900 606 020 485 12;
  • 58) 0.900 606 020 485 12 × 2 = 1 + 0.801 212 040 970 24;
  • 59) 0.801 212 040 970 24 × 2 = 1 + 0.602 424 081 940 48;
  • 60) 0.602 424 081 940 48 × 2 = 1 + 0.204 848 163 880 96;
  • 61) 0.204 848 163 880 96 × 2 = 0 + 0.409 696 327 761 92;
  • 62) 0.409 696 327 761 92 × 2 = 0 + 0.819 392 655 523 84;
  • 63) 0.819 392 655 523 84 × 2 = 1 + 0.638 785 311 047 68;
  • 64) 0.638 785 311 047 68 × 2 = 1 + 0.277 570 622 095 36;
  • 65) 0.277 570 622 095 36 × 2 = 0 + 0.555 141 244 190 72;
  • 66) 0.555 141 244 190 72 × 2 = 1 + 0.110 282 488 381 44;
  • 67) 0.110 282 488 381 44 × 2 = 0 + 0.220 564 976 762 88;
  • 68) 0.220 564 976 762 88 × 2 = 0 + 0.441 129 953 525 76;
  • 69) 0.441 129 953 525 76 × 2 = 0 + 0.882 259 907 051 52;
  • 70) 0.882 259 907 051 52 × 2 = 1 + 0.764 519 814 103 04;
  • 71) 0.764 519 814 103 04 × 2 = 1 + 0.529 039 628 206 08;
  • 72) 0.529 039 628 206 08 × 2 = 1 + 0.058 079 256 412 16;
  • 73) 0.058 079 256 412 16 × 2 = 0 + 0.116 158 512 824 32;
  • 74) 0.116 158 512 824 32 × 2 = 0 + 0.232 317 025 648 64;
  • 75) 0.232 317 025 648 64 × 2 = 0 + 0.464 634 051 297 28;
  • 76) 0.464 634 051 297 28 × 2 = 0 + 0.929 268 102 594 56;
  • 77) 0.929 268 102 594 56 × 2 = 1 + 0.858 536 205 189 12;
  • 78) 0.858 536 205 189 12 × 2 = 1 + 0.717 072 410 378 24;
  • 79) 0.717 072 410 378 24 × 2 = 1 + 0.434 144 820 756 48;
  • 80) 0.434 144 820 756 48 × 2 = 0 + 0.868 289 641 512 96;
  • 81) 0.868 289 641 512 96 × 2 = 1 + 0.736 579 283 025 92;
  • 82) 0.736 579 283 025 92 × 2 = 1 + 0.473 158 566 051 84;
  • 83) 0.473 158 566 051 84 × 2 = 0 + 0.946 317 132 103 68;
  • 84) 0.946 317 132 103 68 × 2 = 1 + 0.892 634 264 207 36;
  • 85) 0.892 634 264 207 36 × 2 = 1 + 0.785 268 528 414 72;
  • 86) 0.785 268 528 414 72 × 2 = 1 + 0.570 537 056 829 44;
  • 87) 0.570 537 056 829 44 × 2 = 1 + 0.141 074 113 658 88;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.000 000 000 041 21(10) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0010 1101 0100 1111 1001 0101 0111 0011 0100 0111 0000 1110 1101 111(2)


5. Positive number before normalization:

0.000 000 000 041 21(10) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0010 1101 0100 1111 1001 0101 0111 0011 0100 0111 0000 1110 1101 111(2)


The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


6. Normalize the binary representation of the number.

Shift the decimal mark 35 positions to the right, so that only one non zero digit remains to the left of it:


0.000 000 000 041 21(10) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0010 1101 0100 1111 1001 0101 0111 0011 0100 0111 0000 1110 1101 111(2) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0010 1101 0100 1111 1001 0101 0111 0011 0100 0111 0000 1110 1101 111(2) × 20 =


1.0110 1010 0111 1100 1010 1011 1001 1010 0011 1000 0111 0110 1111(2) × 2-35


7. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): -35


Mantissa (not normalized):
1.0110 1010 0111 1100 1010 1011 1001 1010 0011 1000 0111 0110 1111


8. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


-35 + 2(11-1) - 1 =


(-35 + 1 023)(10) =


988(10)


9. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 988 ÷ 2 = 494 + 0;
  • 494 ÷ 2 = 247 + 0;
  • 247 ÷ 2 = 123 + 1;
  • 123 ÷ 2 = 61 + 1;
  • 61 ÷ 2 = 30 + 1;
  • 30 ÷ 2 = 15 + 0;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


988(10) =


011 1101 1100(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, only if necessary (not the case here).


Mantissa (normalized) =


1. 0110 1010 0111 1100 1010 1011 1001 1010 0011 1000 0111 0110 1111 =


0110 1010 0111 1100 1010 1011 1001 1010 0011 1000 0111 0110 1111


12. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
011 1101 1100


Mantissa (52 bits) =
0110 1010 0111 1100 1010 1011 1001 1010 0011 1000 0111 0110 1111


The base ten decimal number 0.000 000 000 041 21 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 011 1101 1100 - 0110 1010 0111 1100 1010 1011 1001 1010 0011 1000 0111 0110 1111

(64 bits IEEE 754)

Number 0.000 000 000 041 2 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Number 0.000 000 000 041 22 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Convert to 64 bit double precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 0.000 000 000 041 21 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 02:07 UTC (GMT)
Number 3 215 491 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 02:07 UTC (GMT)
Number 20.333 333 333 333 333 7 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 02:07 UTC (GMT)
Number 763.859 999 999 999 899 955 582 804 977 6 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 02:07 UTC (GMT)
Number 30 000.123 2 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 02:07 UTC (GMT)
Number 11 012 564 623 931 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 02:07 UTC (GMT)
Number -3.504 643 504 228 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 02:07 UTC (GMT)
Number 4 302 896 039 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 02:07 UTC (GMT)
Number 536 870 882 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 02:07 UTC (GMT)
Number -3 938.095 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 02:07 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal