Convert the Number -98 765.432 1 to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number. Detailed Explanations

Number -98 765.432 1(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (to base 2) the integer part of the number.

Convert to binary the fractional part of the number.


1. Start with the positive version of the number:

|-98 765.432 1| = 98 765.432 1

2. First, convert to binary (in base 2) the integer part: 98 765.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 98 765 ÷ 2 = 49 382 + 1;
  • 49 382 ÷ 2 = 24 691 + 0;
  • 24 691 ÷ 2 = 12 345 + 1;
  • 12 345 ÷ 2 = 6 172 + 1;
  • 6 172 ÷ 2 = 3 086 + 0;
  • 3 086 ÷ 2 = 1 543 + 0;
  • 1 543 ÷ 2 = 771 + 1;
  • 771 ÷ 2 = 385 + 1;
  • 385 ÷ 2 = 192 + 1;
  • 192 ÷ 2 = 96 + 0;
  • 96 ÷ 2 = 48 + 0;
  • 48 ÷ 2 = 24 + 0;
  • 24 ÷ 2 = 12 + 0;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

3. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


98 765(10) =


1 1000 0001 1100 1101(2)


4. Convert to binary (base 2) the fractional part: 0.432 1.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.432 1 × 2 = 0 + 0.864 2;
  • 2) 0.864 2 × 2 = 1 + 0.728 4;
  • 3) 0.728 4 × 2 = 1 + 0.456 8;
  • 4) 0.456 8 × 2 = 0 + 0.913 6;
  • 5) 0.913 6 × 2 = 1 + 0.827 2;
  • 6) 0.827 2 × 2 = 1 + 0.654 4;
  • 7) 0.654 4 × 2 = 1 + 0.308 8;
  • 8) 0.308 8 × 2 = 0 + 0.617 6;
  • 9) 0.617 6 × 2 = 1 + 0.235 2;
  • 10) 0.235 2 × 2 = 0 + 0.470 4;
  • 11) 0.470 4 × 2 = 0 + 0.940 8;
  • 12) 0.940 8 × 2 = 1 + 0.881 6;
  • 13) 0.881 6 × 2 = 1 + 0.763 2;
  • 14) 0.763 2 × 2 = 1 + 0.526 4;
  • 15) 0.526 4 × 2 = 1 + 0.052 8;
  • 16) 0.052 8 × 2 = 0 + 0.105 6;
  • 17) 0.105 6 × 2 = 0 + 0.211 2;
  • 18) 0.211 2 × 2 = 0 + 0.422 4;
  • 19) 0.422 4 × 2 = 0 + 0.844 8;
  • 20) 0.844 8 × 2 = 1 + 0.689 6;
  • 21) 0.689 6 × 2 = 1 + 0.379 2;
  • 22) 0.379 2 × 2 = 0 + 0.758 4;
  • 23) 0.758 4 × 2 = 1 + 0.516 8;
  • 24) 0.516 8 × 2 = 1 + 0.033 6;
  • 25) 0.033 6 × 2 = 0 + 0.067 2;
  • 26) 0.067 2 × 2 = 0 + 0.134 4;
  • 27) 0.134 4 × 2 = 0 + 0.268 8;
  • 28) 0.268 8 × 2 = 0 + 0.537 6;
  • 29) 0.537 6 × 2 = 1 + 0.075 2;
  • 30) 0.075 2 × 2 = 0 + 0.150 4;
  • 31) 0.150 4 × 2 = 0 + 0.300 8;
  • 32) 0.300 8 × 2 = 0 + 0.601 6;
  • 33) 0.601 6 × 2 = 1 + 0.203 2;
  • 34) 0.203 2 × 2 = 0 + 0.406 4;
  • 35) 0.406 4 × 2 = 0 + 0.812 8;
  • 36) 0.812 8 × 2 = 1 + 0.625 6;
  • 37) 0.625 6 × 2 = 1 + 0.251 2;
  • 38) 0.251 2 × 2 = 0 + 0.502 4;
  • 39) 0.502 4 × 2 = 1 + 0.004 8;
  • 40) 0.004 8 × 2 = 0 + 0.009 6;
  • 41) 0.009 6 × 2 = 0 + 0.019 2;
  • 42) 0.019 2 × 2 = 0 + 0.038 4;
  • 43) 0.038 4 × 2 = 0 + 0.076 8;
  • 44) 0.076 8 × 2 = 0 + 0.153 6;
  • 45) 0.153 6 × 2 = 0 + 0.307 2;
  • 46) 0.307 2 × 2 = 0 + 0.614 4;
  • 47) 0.614 4 × 2 = 1 + 0.228 8;
  • 48) 0.228 8 × 2 = 0 + 0.457 6;
  • 49) 0.457 6 × 2 = 0 + 0.915 2;
  • 50) 0.915 2 × 2 = 1 + 0.830 4;
  • 51) 0.830 4 × 2 = 1 + 0.660 8;
  • 52) 0.660 8 × 2 = 1 + 0.321 6;
  • 53) 0.321 6 × 2 = 0 + 0.643 2;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


5. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.432 1(10) =


0.0110 1110 1001 1110 0001 1011 0000 1000 1001 1010 0000 0010 0111 0(2)


6. Positive number before normalization:

98 765.432 1(10) =


1 1000 0001 1100 1101.0110 1110 1001 1110 0001 1011 0000 1000 1001 1010 0000 0010 0111 0(2)


The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


7. Normalize the binary representation of the number.

Shift the decimal mark 16 positions to the left, so that only one non zero digit remains to the left of it:


98 765.432 1(10) =


1 1000 0001 1100 1101.0110 1110 1001 1110 0001 1011 0000 1000 1001 1010 0000 0010 0111 0(2) =


1 1000 0001 1100 1101.0110 1110 1001 1110 0001 1011 0000 1000 1001 1010 0000 0010 0111 0(2) × 20 =


1.1000 0001 1100 1101 0110 1110 1001 1110 0001 1011 0000 1000 1001 1010 0000 0010 0111 0(2) × 216


8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 1 (a negative number)


Exponent (unadjusted): 16


Mantissa (not normalized):
1.1000 0001 1100 1101 0110 1110 1001 1110 0001 1011 0000 1000 1001 1010 0000 0010 0111 0


9. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


16 + 2(11-1) - 1 =


(16 + 1 023)(10) =


1 039(10)


10. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 039 ÷ 2 = 519 + 1;
  • 519 ÷ 2 = 259 + 1;
  • 259 ÷ 2 = 129 + 1;
  • 129 ÷ 2 = 64 + 1;
  • 64 ÷ 2 = 32 + 0;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

11. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1039(10) =


100 0000 1111(2)


12. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 1000 0001 1100 1101 0110 1110 1001 1110 0001 1011 0000 1000 1001 1 0100 0000 0100 1110 =


1000 0001 1100 1101 0110 1110 1001 1110 0001 1011 0000 1000 1001


13. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
1 (a negative number)


Exponent (11 bits) =
100 0000 1111


Mantissa (52 bits) =
1000 0001 1100 1101 0110 1110 1001 1110 0001 1011 0000 1000 1001


The base ten decimal number -98 765.432 1 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
1 - 100 0000 1111 - 1000 0001 1100 1101 0110 1110 1001 1110 0001 1011 0000 1000 1001

(64 bits IEEE 754)

Number -98 765.432 2 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Number -98 765.432 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Convert to 64 bit double precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number -98 765.432 1 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:03 UTC (GMT)
Number 108.447 026 621 334 160 21 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:03 UTC (GMT)
Number -1 825.36 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:02 UTC (GMT)
Number 11 111 111 011 124 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:02 UTC (GMT)
Number -28.063 134 8 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:02 UTC (GMT)
Number 11 000 000 110 110 011 001 100 110 011 029 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:02 UTC (GMT)
Number 186.988 941 541 968 436 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:02 UTC (GMT)
Number 989 007 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:02 UTC (GMT)
Number 11 111 110 111 001 100 110 011 001 100 110 011 001 100 110 011 001 100 110 010 985 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:02 UTC (GMT)
Number 1.996 7 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:02 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal