Convert the Number -88.3 to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number. Detailed Explanations

Number -88.3(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (to base 2) the integer part of the number.

Convert to binary the fractional part of the number.


1. Start with the positive version of the number:

|-88.3| = 88.3

2. First, convert to binary (in base 2) the integer part: 88.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 88 ÷ 2 = 44 + 0;
  • 44 ÷ 2 = 22 + 0;
  • 22 ÷ 2 = 11 + 0;
  • 11 ÷ 2 = 5 + 1;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

3. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


88(10) =


101 1000(2)


4. Convert to binary (base 2) the fractional part: 0.3.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.3 × 2 = 0 + 0.6;
  • 2) 0.6 × 2 = 1 + 0.2;
  • 3) 0.2 × 2 = 0 + 0.4;
  • 4) 0.4 × 2 = 0 + 0.8;
  • 5) 0.8 × 2 = 1 + 0.6;
  • 6) 0.6 × 2 = 1 + 0.2;
  • 7) 0.2 × 2 = 0 + 0.4;
  • 8) 0.4 × 2 = 0 + 0.8;
  • 9) 0.8 × 2 = 1 + 0.6;
  • 10) 0.6 × 2 = 1 + 0.2;
  • 11) 0.2 × 2 = 0 + 0.4;
  • 12) 0.4 × 2 = 0 + 0.8;
  • 13) 0.8 × 2 = 1 + 0.6;
  • 14) 0.6 × 2 = 1 + 0.2;
  • 15) 0.2 × 2 = 0 + 0.4;
  • 16) 0.4 × 2 = 0 + 0.8;
  • 17) 0.8 × 2 = 1 + 0.6;
  • 18) 0.6 × 2 = 1 + 0.2;
  • 19) 0.2 × 2 = 0 + 0.4;
  • 20) 0.4 × 2 = 0 + 0.8;
  • 21) 0.8 × 2 = 1 + 0.6;
  • 22) 0.6 × 2 = 1 + 0.2;
  • 23) 0.2 × 2 = 0 + 0.4;
  • 24) 0.4 × 2 = 0 + 0.8;
  • 25) 0.8 × 2 = 1 + 0.6;
  • 26) 0.6 × 2 = 1 + 0.2;
  • 27) 0.2 × 2 = 0 + 0.4;
  • 28) 0.4 × 2 = 0 + 0.8;
  • 29) 0.8 × 2 = 1 + 0.6;
  • 30) 0.6 × 2 = 1 + 0.2;
  • 31) 0.2 × 2 = 0 + 0.4;
  • 32) 0.4 × 2 = 0 + 0.8;
  • 33) 0.8 × 2 = 1 + 0.6;
  • 34) 0.6 × 2 = 1 + 0.2;
  • 35) 0.2 × 2 = 0 + 0.4;
  • 36) 0.4 × 2 = 0 + 0.8;
  • 37) 0.8 × 2 = 1 + 0.6;
  • 38) 0.6 × 2 = 1 + 0.2;
  • 39) 0.2 × 2 = 0 + 0.4;
  • 40) 0.4 × 2 = 0 + 0.8;
  • 41) 0.8 × 2 = 1 + 0.6;
  • 42) 0.6 × 2 = 1 + 0.2;
  • 43) 0.2 × 2 = 0 + 0.4;
  • 44) 0.4 × 2 = 0 + 0.8;
  • 45) 0.8 × 2 = 1 + 0.6;
  • 46) 0.6 × 2 = 1 + 0.2;
  • 47) 0.2 × 2 = 0 + 0.4;
  • 48) 0.4 × 2 = 0 + 0.8;
  • 49) 0.8 × 2 = 1 + 0.6;
  • 50) 0.6 × 2 = 1 + 0.2;
  • 51) 0.2 × 2 = 0 + 0.4;
  • 52) 0.4 × 2 = 0 + 0.8;
  • 53) 0.8 × 2 = 1 + 0.6;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


5. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.3(10) =


0.0100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1(2)


6. Positive number before normalization:

88.3(10) =


101 1000.0100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1(2)


The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


7. Normalize the binary representation of the number.

Shift the decimal mark 6 positions to the left, so that only one non zero digit remains to the left of it:


88.3(10) =


101 1000.0100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1(2) =


101 1000.0100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1(2) × 20 =


1.0110 0001 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 001(2) × 26


8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 1 (a negative number)


Exponent (unadjusted): 6


Mantissa (not normalized):
1.0110 0001 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 001


9. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


6 + 2(11-1) - 1 =


(6 + 1 023)(10) =


1 029(10)


10. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 029 ÷ 2 = 514 + 1;
  • 514 ÷ 2 = 257 + 0;
  • 257 ÷ 2 = 128 + 1;
  • 128 ÷ 2 = 64 + 0;
  • 64 ÷ 2 = 32 + 0;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

11. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1029(10) =


100 0000 0101(2)


12. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 0110 0001 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 001 1001 =


0110 0001 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011


13. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
1 (a negative number)


Exponent (11 bits) =
100 0000 0101


Mantissa (52 bits) =
0110 0001 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011


The base ten decimal number -88.3 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
1 - 100 0000 0101 - 0110 0001 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011

(64 bits IEEE 754)

Number -88.4 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Number -88.2 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Convert to 64 bit double precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number -88.3 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:50 UTC (GMT)
Number 1 093 072 960 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:50 UTC (GMT)
Number 1 011 111 101 000 080 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:50 UTC (GMT)
Number 92 215 067 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:50 UTC (GMT)
Number -260.843 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:50 UTC (GMT)
Number 13.888 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:49 UTC (GMT)
Number 964.653 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:49 UTC (GMT)
Number 73 453 634.784 5 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:49 UTC (GMT)
Number 341.4 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:49 UTC (GMT)
Number 375.1 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 01:49 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal