Convert the Number -6 666 687 to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number. Detailed Explanations

Number -6 666 687(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (base 2) the integer number.


1. Start with the positive version of the number:

|-6 666 687| = 6 666 687

2. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 6 666 687 ÷ 2 = 3 333 343 + 1;
  • 3 333 343 ÷ 2 = 1 666 671 + 1;
  • 1 666 671 ÷ 2 = 833 335 + 1;
  • 833 335 ÷ 2 = 416 667 + 1;
  • 416 667 ÷ 2 = 208 333 + 1;
  • 208 333 ÷ 2 = 104 166 + 1;
  • 104 166 ÷ 2 = 52 083 + 0;
  • 52 083 ÷ 2 = 26 041 + 1;
  • 26 041 ÷ 2 = 13 020 + 1;
  • 13 020 ÷ 2 = 6 510 + 0;
  • 6 510 ÷ 2 = 3 255 + 0;
  • 3 255 ÷ 2 = 1 627 + 1;
  • 1 627 ÷ 2 = 813 + 1;
  • 813 ÷ 2 = 406 + 1;
  • 406 ÷ 2 = 203 + 0;
  • 203 ÷ 2 = 101 + 1;
  • 101 ÷ 2 = 50 + 1;
  • 50 ÷ 2 = 25 + 0;
  • 25 ÷ 2 = 12 + 1;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

3. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


6 666 687(10) =


110 0101 1011 1001 1011 1111(2)



The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


4. Normalize the binary representation of the number.

Shift the decimal mark 22 positions to the left, so that only one non zero digit remains to the left of it:


6 666 687(10) =


110 0101 1011 1001 1011 1111(2) =


110 0101 1011 1001 1011 1111(2) × 20 =


1.1001 0110 1110 0110 1111 11(2) × 222


5. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 1 (a negative number)


Exponent (unadjusted): 22


Mantissa (not normalized):
1.1001 0110 1110 0110 1111 11


6. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


22 + 2(11-1) - 1 =


(22 + 1 023)(10) =


1 045(10)


7. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 045 ÷ 2 = 522 + 1;
  • 522 ÷ 2 = 261 + 0;
  • 261 ÷ 2 = 130 + 1;
  • 130 ÷ 2 = 65 + 0;
  • 65 ÷ 2 = 32 + 1;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

8. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1045(10) =


100 0001 0101(2)


9. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by adding the necessary number of zeros to the right.


Mantissa (normalized) =


1. 10 0101 1011 1001 1011 1111 00 0000 0000 0000 0000 0000 0000 0000 =


1001 0110 1110 0110 1111 1100 0000 0000 0000 0000 0000 0000 0000


10. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
1 (a negative number)


Exponent (11 bits) =
100 0001 0101


Mantissa (52 bits) =
1001 0110 1110 0110 1111 1100 0000 0000 0000 0000 0000 0000 0000


The base ten decimal number -6 666 687 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
1 - 100 0001 0101 - 1001 0110 1110 0110 1111 1100 0000 0000 0000 0000 0000 0000 0000

(64 bits IEEE 754)

Number -6 666 688 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Number -6 666 686 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Convert to 64 bit double precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number -6 666 687 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 13:31 UTC (GMT)
Number 5.867 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 13:31 UTC (GMT)
Number 14 897.799 651 565 175 736 322 999 000 549 316 401 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 13:31 UTC (GMT)
Number 27.555 555 556 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 13:31 UTC (GMT)
Number 8 372 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 13:31 UTC (GMT)
Number -2 737 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 13:31 UTC (GMT)
Number -1 302.124 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 13:31 UTC (GMT)
Number 67 872 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 13:31 UTC (GMT)
Number 33.687 7 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 13:31 UTC (GMT)
Number 864 021 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 13:31 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal