Convert the Number -46 382 to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number. Detailed Explanations

Number -46 382(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (base 2) the integer number.


1. Start with the positive version of the number:

|-46 382| = 46 382

2. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 46 382 ÷ 2 = 23 191 + 0;
  • 23 191 ÷ 2 = 11 595 + 1;
  • 11 595 ÷ 2 = 5 797 + 1;
  • 5 797 ÷ 2 = 2 898 + 1;
  • 2 898 ÷ 2 = 1 449 + 0;
  • 1 449 ÷ 2 = 724 + 1;
  • 724 ÷ 2 = 362 + 0;
  • 362 ÷ 2 = 181 + 0;
  • 181 ÷ 2 = 90 + 1;
  • 90 ÷ 2 = 45 + 0;
  • 45 ÷ 2 = 22 + 1;
  • 22 ÷ 2 = 11 + 0;
  • 11 ÷ 2 = 5 + 1;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

3. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


46 382(10) =


1011 0101 0010 1110(2)



The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


4. Normalize the binary representation of the number.

Shift the decimal mark 15 positions to the left, so that only one non zero digit remains to the left of it:


46 382(10) =


1011 0101 0010 1110(2) =


1011 0101 0010 1110(2) × 20 =


1.0110 1010 0101 110(2) × 215


5. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 1 (a negative number)


Exponent (unadjusted): 15


Mantissa (not normalized):
1.0110 1010 0101 110


6. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


15 + 2(11-1) - 1 =


(15 + 1 023)(10) =


1 038(10)


7. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 038 ÷ 2 = 519 + 0;
  • 519 ÷ 2 = 259 + 1;
  • 259 ÷ 2 = 129 + 1;
  • 129 ÷ 2 = 64 + 1;
  • 64 ÷ 2 = 32 + 0;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

8. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1038(10) =


100 0000 1110(2)


9. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by adding the necessary number of zeros to the right.


Mantissa (normalized) =


1. 011 0101 0010 1110 0 0000 0000 0000 0000 0000 0000 0000 0000 0000 =


0110 1010 0101 1100 0000 0000 0000 0000 0000 0000 0000 0000 0000


10. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
1 (a negative number)


Exponent (11 bits) =
100 0000 1110


Mantissa (52 bits) =
0110 1010 0101 1100 0000 0000 0000 0000 0000 0000 0000 0000 0000


The base ten decimal number -46 382 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
1 - 100 0000 1110 - 0110 1010 0101 1100 0000 0000 0000 0000 0000 0000 0000 0000 0000

(64 bits IEEE 754)

Number -46 383 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Number -46 381 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Convert to 64 bit double precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number -46 382 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:00 UTC (GMT)
Number 30 000.123 7 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:00 UTC (GMT)
Number -1 388 942 383 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:00 UTC (GMT)
Number 54 975 581 388 860 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:00 UTC (GMT)
Number 83.625 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:00 UTC (GMT)
Number 7 159 237 869 180 112 170 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:00 UTC (GMT)
Number 49.781 7 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:00 UTC (GMT)
Number 69.696 969 691 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:00 UTC (GMT)
Number -1 100 004 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:00 UTC (GMT)
Number -10 101.117 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:00 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal