Convert the Number -45 474 668.446 669 to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number. Detailed Explanations

Number -45 474 668.446 669(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (to base 2) the integer part of the number.

Convert to binary the fractional part of the number.


1. Start with the positive version of the number:

|-45 474 668.446 669| = 45 474 668.446 669

2. First, convert to binary (in base 2) the integer part: 45 474 668.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 45 474 668 ÷ 2 = 22 737 334 + 0;
  • 22 737 334 ÷ 2 = 11 368 667 + 0;
  • 11 368 667 ÷ 2 = 5 684 333 + 1;
  • 5 684 333 ÷ 2 = 2 842 166 + 1;
  • 2 842 166 ÷ 2 = 1 421 083 + 0;
  • 1 421 083 ÷ 2 = 710 541 + 1;
  • 710 541 ÷ 2 = 355 270 + 1;
  • 355 270 ÷ 2 = 177 635 + 0;
  • 177 635 ÷ 2 = 88 817 + 1;
  • 88 817 ÷ 2 = 44 408 + 1;
  • 44 408 ÷ 2 = 22 204 + 0;
  • 22 204 ÷ 2 = 11 102 + 0;
  • 11 102 ÷ 2 = 5 551 + 0;
  • 5 551 ÷ 2 = 2 775 + 1;
  • 2 775 ÷ 2 = 1 387 + 1;
  • 1 387 ÷ 2 = 693 + 1;
  • 693 ÷ 2 = 346 + 1;
  • 346 ÷ 2 = 173 + 0;
  • 173 ÷ 2 = 86 + 1;
  • 86 ÷ 2 = 43 + 0;
  • 43 ÷ 2 = 21 + 1;
  • 21 ÷ 2 = 10 + 1;
  • 10 ÷ 2 = 5 + 0;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

3. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


45 474 668(10) =


10 1011 0101 1110 0011 0110 1100(2)


4. Convert to binary (base 2) the fractional part: 0.446 669.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.446 669 × 2 = 0 + 0.893 338;
  • 2) 0.893 338 × 2 = 1 + 0.786 676;
  • 3) 0.786 676 × 2 = 1 + 0.573 352;
  • 4) 0.573 352 × 2 = 1 + 0.146 704;
  • 5) 0.146 704 × 2 = 0 + 0.293 408;
  • 6) 0.293 408 × 2 = 0 + 0.586 816;
  • 7) 0.586 816 × 2 = 1 + 0.173 632;
  • 8) 0.173 632 × 2 = 0 + 0.347 264;
  • 9) 0.347 264 × 2 = 0 + 0.694 528;
  • 10) 0.694 528 × 2 = 1 + 0.389 056;
  • 11) 0.389 056 × 2 = 0 + 0.778 112;
  • 12) 0.778 112 × 2 = 1 + 0.556 224;
  • 13) 0.556 224 × 2 = 1 + 0.112 448;
  • 14) 0.112 448 × 2 = 0 + 0.224 896;
  • 15) 0.224 896 × 2 = 0 + 0.449 792;
  • 16) 0.449 792 × 2 = 0 + 0.899 584;
  • 17) 0.899 584 × 2 = 1 + 0.799 168;
  • 18) 0.799 168 × 2 = 1 + 0.598 336;
  • 19) 0.598 336 × 2 = 1 + 0.196 672;
  • 20) 0.196 672 × 2 = 0 + 0.393 344;
  • 21) 0.393 344 × 2 = 0 + 0.786 688;
  • 22) 0.786 688 × 2 = 1 + 0.573 376;
  • 23) 0.573 376 × 2 = 1 + 0.146 752;
  • 24) 0.146 752 × 2 = 0 + 0.293 504;
  • 25) 0.293 504 × 2 = 0 + 0.587 008;
  • 26) 0.587 008 × 2 = 1 + 0.174 016;
  • 27) 0.174 016 × 2 = 0 + 0.348 032;
  • 28) 0.348 032 × 2 = 0 + 0.696 064;
  • 29) 0.696 064 × 2 = 1 + 0.392 128;
  • 30) 0.392 128 × 2 = 0 + 0.784 256;
  • 31) 0.784 256 × 2 = 1 + 0.568 512;
  • 32) 0.568 512 × 2 = 1 + 0.137 024;
  • 33) 0.137 024 × 2 = 0 + 0.274 048;
  • 34) 0.274 048 × 2 = 0 + 0.548 096;
  • 35) 0.548 096 × 2 = 1 + 0.096 192;
  • 36) 0.096 192 × 2 = 0 + 0.192 384;
  • 37) 0.192 384 × 2 = 0 + 0.384 768;
  • 38) 0.384 768 × 2 = 0 + 0.769 536;
  • 39) 0.769 536 × 2 = 1 + 0.539 072;
  • 40) 0.539 072 × 2 = 1 + 0.078 144;
  • 41) 0.078 144 × 2 = 0 + 0.156 288;
  • 42) 0.156 288 × 2 = 0 + 0.312 576;
  • 43) 0.312 576 × 2 = 0 + 0.625 152;
  • 44) 0.625 152 × 2 = 1 + 0.250 304;
  • 45) 0.250 304 × 2 = 0 + 0.500 608;
  • 46) 0.500 608 × 2 = 1 + 0.001 216;
  • 47) 0.001 216 × 2 = 0 + 0.002 432;
  • 48) 0.002 432 × 2 = 0 + 0.004 864;
  • 49) 0.004 864 × 2 = 0 + 0.009 728;
  • 50) 0.009 728 × 2 = 0 + 0.019 456;
  • 51) 0.019 456 × 2 = 0 + 0.038 912;
  • 52) 0.038 912 × 2 = 0 + 0.077 824;
  • 53) 0.077 824 × 2 = 0 + 0.155 648;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


5. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.446 669(10) =


0.0111 0010 0101 1000 1110 0110 0100 1011 0010 0011 0001 0100 0000 0(2)


6. Positive number before normalization:

45 474 668.446 669(10) =


10 1011 0101 1110 0011 0110 1100.0111 0010 0101 1000 1110 0110 0100 1011 0010 0011 0001 0100 0000 0(2)


The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


7. Normalize the binary representation of the number.

Shift the decimal mark 25 positions to the left, so that only one non zero digit remains to the left of it:


45 474 668.446 669(10) =


10 1011 0101 1110 0011 0110 1100.0111 0010 0101 1000 1110 0110 0100 1011 0010 0011 0001 0100 0000 0(2) =


10 1011 0101 1110 0011 0110 1100.0111 0010 0101 1000 1110 0110 0100 1011 0010 0011 0001 0100 0000 0(2) × 20 =


1.0101 1010 1111 0001 1011 0110 0011 1001 0010 1100 0111 0011 0010 0101 1001 0001 1000 1010 0000 00(2) × 225


8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 1 (a negative number)


Exponent (unadjusted): 25


Mantissa (not normalized):
1.0101 1010 1111 0001 1011 0110 0011 1001 0010 1100 0111 0011 0010 0101 1001 0001 1000 1010 0000 00


9. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


25 + 2(11-1) - 1 =


(25 + 1 023)(10) =


1 048(10)


10. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 048 ÷ 2 = 524 + 0;
  • 524 ÷ 2 = 262 + 0;
  • 262 ÷ 2 = 131 + 0;
  • 131 ÷ 2 = 65 + 1;
  • 65 ÷ 2 = 32 + 1;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

11. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1048(10) =


100 0001 1000(2)


12. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 0101 1010 1111 0001 1011 0110 0011 1001 0010 1100 0111 0011 0010 01 0110 0100 0110 0010 1000 0000 =


0101 1010 1111 0001 1011 0110 0011 1001 0010 1100 0111 0011 0010


13. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
1 (a negative number)


Exponent (11 bits) =
100 0001 1000


Mantissa (52 bits) =
0101 1010 1111 0001 1011 0110 0011 1001 0010 1100 0111 0011 0010


The base ten decimal number -45 474 668.446 669 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
1 - 100 0001 1000 - 0101 1010 1111 0001 1011 0110 0011 1001 0010 1100 0111 0011 0010

(64 bits IEEE 754)

Number -45 474 668.446 67 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Number -45 474 668.446 668 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Convert to 64 bit double precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number -45 474 668.446 669 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:19 UTC (GMT)
Number 3.333 333 331 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:19 UTC (GMT)
Number -0.000 006 611 69 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:19 UTC (GMT)
Number -521.762 648 714 747 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:19 UTC (GMT)
Number 1.333 333 333 333 333 259 318 465 024 989 563 3 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:19 UTC (GMT)
Number 1.999 999 999 999 999 1 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:19 UTC (GMT)
Number 980 775 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:19 UTC (GMT)
Number 11 111 099 986 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:19 UTC (GMT)
Number -830 907 838 879 382 260 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:19 UTC (GMT)
Number 86 400.02 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:19 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal