64bit IEEE 754: Decimal ↗ Double Precision Floating Point Binary: -361 244.825 431 1 Convert the Number to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number

Number -361 244.825 431 1(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. Start with the positive version of the number:

|-361 244.825 431 1| = 361 244.825 431 1

2. First, convert to binary (in base 2) the integer part: 361 244.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 361 244 ÷ 2 = 180 622 + 0;
  • 180 622 ÷ 2 = 90 311 + 0;
  • 90 311 ÷ 2 = 45 155 + 1;
  • 45 155 ÷ 2 = 22 577 + 1;
  • 22 577 ÷ 2 = 11 288 + 1;
  • 11 288 ÷ 2 = 5 644 + 0;
  • 5 644 ÷ 2 = 2 822 + 0;
  • 2 822 ÷ 2 = 1 411 + 0;
  • 1 411 ÷ 2 = 705 + 1;
  • 705 ÷ 2 = 352 + 1;
  • 352 ÷ 2 = 176 + 0;
  • 176 ÷ 2 = 88 + 0;
  • 88 ÷ 2 = 44 + 0;
  • 44 ÷ 2 = 22 + 0;
  • 22 ÷ 2 = 11 + 0;
  • 11 ÷ 2 = 5 + 1;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

3. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


361 244(10) =


101 1000 0011 0001 1100(2)


4. Convert to binary (base 2) the fractional part: 0.825 431 1.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.825 431 1 × 2 = 1 + 0.650 862 2;
  • 2) 0.650 862 2 × 2 = 1 + 0.301 724 4;
  • 3) 0.301 724 4 × 2 = 0 + 0.603 448 8;
  • 4) 0.603 448 8 × 2 = 1 + 0.206 897 6;
  • 5) 0.206 897 6 × 2 = 0 + 0.413 795 2;
  • 6) 0.413 795 2 × 2 = 0 + 0.827 590 4;
  • 7) 0.827 590 4 × 2 = 1 + 0.655 180 8;
  • 8) 0.655 180 8 × 2 = 1 + 0.310 361 6;
  • 9) 0.310 361 6 × 2 = 0 + 0.620 723 2;
  • 10) 0.620 723 2 × 2 = 1 + 0.241 446 4;
  • 11) 0.241 446 4 × 2 = 0 + 0.482 892 8;
  • 12) 0.482 892 8 × 2 = 0 + 0.965 785 6;
  • 13) 0.965 785 6 × 2 = 1 + 0.931 571 2;
  • 14) 0.931 571 2 × 2 = 1 + 0.863 142 4;
  • 15) 0.863 142 4 × 2 = 1 + 0.726 284 8;
  • 16) 0.726 284 8 × 2 = 1 + 0.452 569 6;
  • 17) 0.452 569 6 × 2 = 0 + 0.905 139 2;
  • 18) 0.905 139 2 × 2 = 1 + 0.810 278 4;
  • 19) 0.810 278 4 × 2 = 1 + 0.620 556 8;
  • 20) 0.620 556 8 × 2 = 1 + 0.241 113 6;
  • 21) 0.241 113 6 × 2 = 0 + 0.482 227 2;
  • 22) 0.482 227 2 × 2 = 0 + 0.964 454 4;
  • 23) 0.964 454 4 × 2 = 1 + 0.928 908 8;
  • 24) 0.928 908 8 × 2 = 1 + 0.857 817 6;
  • 25) 0.857 817 6 × 2 = 1 + 0.715 635 2;
  • 26) 0.715 635 2 × 2 = 1 + 0.431 270 4;
  • 27) 0.431 270 4 × 2 = 0 + 0.862 540 8;
  • 28) 0.862 540 8 × 2 = 1 + 0.725 081 6;
  • 29) 0.725 081 6 × 2 = 1 + 0.450 163 2;
  • 30) 0.450 163 2 × 2 = 0 + 0.900 326 4;
  • 31) 0.900 326 4 × 2 = 1 + 0.800 652 8;
  • 32) 0.800 652 8 × 2 = 1 + 0.601 305 6;
  • 33) 0.601 305 6 × 2 = 1 + 0.202 611 2;
  • 34) 0.202 611 2 × 2 = 0 + 0.405 222 4;
  • 35) 0.405 222 4 × 2 = 0 + 0.810 444 8;
  • 36) 0.810 444 8 × 2 = 1 + 0.620 889 6;
  • 37) 0.620 889 6 × 2 = 1 + 0.241 779 2;
  • 38) 0.241 779 2 × 2 = 0 + 0.483 558 4;
  • 39) 0.483 558 4 × 2 = 0 + 0.967 116 8;
  • 40) 0.967 116 8 × 2 = 1 + 0.934 233 6;
  • 41) 0.934 233 6 × 2 = 1 + 0.868 467 2;
  • 42) 0.868 467 2 × 2 = 1 + 0.736 934 4;
  • 43) 0.736 934 4 × 2 = 1 + 0.473 868 8;
  • 44) 0.473 868 8 × 2 = 0 + 0.947 737 6;
  • 45) 0.947 737 6 × 2 = 1 + 0.895 475 2;
  • 46) 0.895 475 2 × 2 = 1 + 0.790 950 4;
  • 47) 0.790 950 4 × 2 = 1 + 0.581 900 8;
  • 48) 0.581 900 8 × 2 = 1 + 0.163 801 6;
  • 49) 0.163 801 6 × 2 = 0 + 0.327 603 2;
  • 50) 0.327 603 2 × 2 = 0 + 0.655 206 4;
  • 51) 0.655 206 4 × 2 = 1 + 0.310 412 8;
  • 52) 0.310 412 8 × 2 = 0 + 0.620 825 6;
  • 53) 0.620 825 6 × 2 = 1 + 0.241 651 2;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


5. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.825 431 1(10) =


0.1101 0011 0100 1111 0111 0011 1101 1011 1001 1001 1110 1111 0010 1(2)


6. Positive number before normalization:

361 244.825 431 1(10) =


101 1000 0011 0001 1100.1101 0011 0100 1111 0111 0011 1101 1011 1001 1001 1110 1111 0010 1(2)

7. Normalize the binary representation of the number.

Shift the decimal mark 18 positions to the left, so that only one non zero digit remains to the left of it:


361 244.825 431 1(10) =


101 1000 0011 0001 1100.1101 0011 0100 1111 0111 0011 1101 1011 1001 1001 1110 1111 0010 1(2) =


101 1000 0011 0001 1100.1101 0011 0100 1111 0111 0011 1101 1011 1001 1001 1110 1111 0010 1(2) × 20 =


1.0110 0000 1100 0111 0011 0100 1101 0011 1101 1100 1111 0110 1110 0110 0111 1011 1100 101(2) × 218


8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 1 (a negative number)


Exponent (unadjusted): 18


Mantissa (not normalized):
1.0110 0000 1100 0111 0011 0100 1101 0011 1101 1100 1111 0110 1110 0110 0111 1011 1100 101


9. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


18 + 2(11-1) - 1 =


(18 + 1 023)(10) =


1 041(10)


10. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 041 ÷ 2 = 520 + 1;
  • 520 ÷ 2 = 260 + 0;
  • 260 ÷ 2 = 130 + 0;
  • 130 ÷ 2 = 65 + 0;
  • 65 ÷ 2 = 32 + 1;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

11. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1041(10) =


100 0001 0001(2)


12. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 0110 0000 1100 0111 0011 0100 1101 0011 1101 1100 1111 0110 1110 011 0011 1101 1110 0101 =


0110 0000 1100 0111 0011 0100 1101 0011 1101 1100 1111 0110 1110


13. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
1 (a negative number)


Exponent (11 bits) =
100 0001 0001


Mantissa (52 bits) =
0110 0000 1100 0111 0011 0100 1101 0011 1101 1100 1111 0110 1110


The base ten decimal number -361 244.825 431 1 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
1 - 100 0001 0001 - 0110 0000 1100 0111 0011 0100 1101 0011 1101 1100 1111 0110 1110

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 9 945 043 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 21:50 UTC (GMT)
Number 12 345.46 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 21:50 UTC (GMT)
Number 77 341 212 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 21:50 UTC (GMT)
Number 4.645 11 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 21:50 UTC (GMT)
Number -4 662 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 21:49 UTC (GMT)
Number 21 436.581 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 21:49 UTC (GMT)
Number 8.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 06 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 21:49 UTC (GMT)
Number 5 419 461 499 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 21:49 UTC (GMT)
Number 328 007 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 21:49 UTC (GMT)
Number 17 779 869 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 21:49 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100