Convert the Number -2 752 512.3 to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number. Detailed Explanations

Number -2 752 512.3(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (to base 2) the integer part of the number.

Convert to binary the fractional part of the number.


1. Start with the positive version of the number:

|-2 752 512.3| = 2 752 512.3

2. First, convert to binary (in base 2) the integer part: 2 752 512.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 2 752 512 ÷ 2 = 1 376 256 + 0;
  • 1 376 256 ÷ 2 = 688 128 + 0;
  • 688 128 ÷ 2 = 344 064 + 0;
  • 344 064 ÷ 2 = 172 032 + 0;
  • 172 032 ÷ 2 = 86 016 + 0;
  • 86 016 ÷ 2 = 43 008 + 0;
  • 43 008 ÷ 2 = 21 504 + 0;
  • 21 504 ÷ 2 = 10 752 + 0;
  • 10 752 ÷ 2 = 5 376 + 0;
  • 5 376 ÷ 2 = 2 688 + 0;
  • 2 688 ÷ 2 = 1 344 + 0;
  • 1 344 ÷ 2 = 672 + 0;
  • 672 ÷ 2 = 336 + 0;
  • 336 ÷ 2 = 168 + 0;
  • 168 ÷ 2 = 84 + 0;
  • 84 ÷ 2 = 42 + 0;
  • 42 ÷ 2 = 21 + 0;
  • 21 ÷ 2 = 10 + 1;
  • 10 ÷ 2 = 5 + 0;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

3. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


2 752 512(10) =


10 1010 0000 0000 0000 0000(2)


4. Convert to binary (base 2) the fractional part: 0.3.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.3 × 2 = 0 + 0.6;
  • 2) 0.6 × 2 = 1 + 0.2;
  • 3) 0.2 × 2 = 0 + 0.4;
  • 4) 0.4 × 2 = 0 + 0.8;
  • 5) 0.8 × 2 = 1 + 0.6;
  • 6) 0.6 × 2 = 1 + 0.2;
  • 7) 0.2 × 2 = 0 + 0.4;
  • 8) 0.4 × 2 = 0 + 0.8;
  • 9) 0.8 × 2 = 1 + 0.6;
  • 10) 0.6 × 2 = 1 + 0.2;
  • 11) 0.2 × 2 = 0 + 0.4;
  • 12) 0.4 × 2 = 0 + 0.8;
  • 13) 0.8 × 2 = 1 + 0.6;
  • 14) 0.6 × 2 = 1 + 0.2;
  • 15) 0.2 × 2 = 0 + 0.4;
  • 16) 0.4 × 2 = 0 + 0.8;
  • 17) 0.8 × 2 = 1 + 0.6;
  • 18) 0.6 × 2 = 1 + 0.2;
  • 19) 0.2 × 2 = 0 + 0.4;
  • 20) 0.4 × 2 = 0 + 0.8;
  • 21) 0.8 × 2 = 1 + 0.6;
  • 22) 0.6 × 2 = 1 + 0.2;
  • 23) 0.2 × 2 = 0 + 0.4;
  • 24) 0.4 × 2 = 0 + 0.8;
  • 25) 0.8 × 2 = 1 + 0.6;
  • 26) 0.6 × 2 = 1 + 0.2;
  • 27) 0.2 × 2 = 0 + 0.4;
  • 28) 0.4 × 2 = 0 + 0.8;
  • 29) 0.8 × 2 = 1 + 0.6;
  • 30) 0.6 × 2 = 1 + 0.2;
  • 31) 0.2 × 2 = 0 + 0.4;
  • 32) 0.4 × 2 = 0 + 0.8;
  • 33) 0.8 × 2 = 1 + 0.6;
  • 34) 0.6 × 2 = 1 + 0.2;
  • 35) 0.2 × 2 = 0 + 0.4;
  • 36) 0.4 × 2 = 0 + 0.8;
  • 37) 0.8 × 2 = 1 + 0.6;
  • 38) 0.6 × 2 = 1 + 0.2;
  • 39) 0.2 × 2 = 0 + 0.4;
  • 40) 0.4 × 2 = 0 + 0.8;
  • 41) 0.8 × 2 = 1 + 0.6;
  • 42) 0.6 × 2 = 1 + 0.2;
  • 43) 0.2 × 2 = 0 + 0.4;
  • 44) 0.4 × 2 = 0 + 0.8;
  • 45) 0.8 × 2 = 1 + 0.6;
  • 46) 0.6 × 2 = 1 + 0.2;
  • 47) 0.2 × 2 = 0 + 0.4;
  • 48) 0.4 × 2 = 0 + 0.8;
  • 49) 0.8 × 2 = 1 + 0.6;
  • 50) 0.6 × 2 = 1 + 0.2;
  • 51) 0.2 × 2 = 0 + 0.4;
  • 52) 0.4 × 2 = 0 + 0.8;
  • 53) 0.8 × 2 = 1 + 0.6;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


5. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.3(10) =


0.0100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1(2)


6. Positive number before normalization:

2 752 512.3(10) =


10 1010 0000 0000 0000 0000.0100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1(2)


The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


7. Normalize the binary representation of the number.

Shift the decimal mark 21 positions to the left, so that only one non zero digit remains to the left of it:


2 752 512.3(10) =


10 1010 0000 0000 0000 0000.0100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1(2) =


10 1010 0000 0000 0000 0000.0100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1(2) × 20 =


1.0101 0000 0000 0000 0000 0010 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 01(2) × 221


8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 1 (a negative number)


Exponent (unadjusted): 21


Mantissa (not normalized):
1.0101 0000 0000 0000 0000 0010 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 01


9. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


21 + 2(11-1) - 1 =


(21 + 1 023)(10) =


1 044(10)


10. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 044 ÷ 2 = 522 + 0;
  • 522 ÷ 2 = 261 + 0;
  • 261 ÷ 2 = 130 + 1;
  • 130 ÷ 2 = 65 + 0;
  • 65 ÷ 2 = 32 + 1;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

11. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1044(10) =


100 0001 0100(2)


12. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 0101 0000 0000 0000 0000 0010 0110 0110 0110 0110 0110 0110 0110 01 1001 1001 1001 1001 1001 =


0101 0000 0000 0000 0000 0010 0110 0110 0110 0110 0110 0110 0110


13. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
1 (a negative number)


Exponent (11 bits) =
100 0001 0100


Mantissa (52 bits) =
0101 0000 0000 0000 0000 0010 0110 0110 0110 0110 0110 0110 0110


The base ten decimal number -2 752 512.3 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
1 - 100 0001 0100 - 0101 0000 0000 0000 0000 0010 0110 0110 0110 0110 0110 0110 0110

(64 bits IEEE 754)

Number -2 752 512.4 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Number -2 752 512.2 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Convert to 64 bit double precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number -2 752 512.3 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 13:17 UTC (GMT)
Number 71.68 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 13:17 UTC (GMT)
Number 5 931 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 13:17 UTC (GMT)
Number 69 856 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 13:17 UTC (GMT)
Number 118.128 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 13:17 UTC (GMT)
Number 2 885 681 149 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 13:16 UTC (GMT)
Number 25.12 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 13:16 UTC (GMT)
Number 777.789 999 999 999 963 620 211 929 02 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 13:16 UTC (GMT)
Number 0.642 787 4 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 13:16 UTC (GMT)
Number 0.718 281 828 46 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 13:16 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal