Convert the Number -2 347 to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number. Detailed Explanations

Number -2 347(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (base 2) the integer number.


1. Start with the positive version of the number:

|-2 347| = 2 347

2. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 2 347 ÷ 2 = 1 173 + 1;
  • 1 173 ÷ 2 = 586 + 1;
  • 586 ÷ 2 = 293 + 0;
  • 293 ÷ 2 = 146 + 1;
  • 146 ÷ 2 = 73 + 0;
  • 73 ÷ 2 = 36 + 1;
  • 36 ÷ 2 = 18 + 0;
  • 18 ÷ 2 = 9 + 0;
  • 9 ÷ 2 = 4 + 1;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

3. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


2 347(10) =


1001 0010 1011(2)



The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


4. Normalize the binary representation of the number.

Shift the decimal mark 11 positions to the left, so that only one non zero digit remains to the left of it:


2 347(10) =


1001 0010 1011(2) =


1001 0010 1011(2) × 20 =


1.0010 0101 011(2) × 211


5. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 1 (a negative number)


Exponent (unadjusted): 11


Mantissa (not normalized):
1.0010 0101 011


6. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


11 + 2(11-1) - 1 =


(11 + 1 023)(10) =


1 034(10)


7. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 034 ÷ 2 = 517 + 0;
  • 517 ÷ 2 = 258 + 1;
  • 258 ÷ 2 = 129 + 0;
  • 129 ÷ 2 = 64 + 1;
  • 64 ÷ 2 = 32 + 0;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

8. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1034(10) =


100 0000 1010(2)


9. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by adding the necessary number of zeros to the right.


Mantissa (normalized) =


1. 001 0010 1011 0 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 =


0010 0101 0110 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000


10. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
1 (a negative number)


Exponent (11 bits) =
100 0000 1010


Mantissa (52 bits) =
0010 0101 0110 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000


The base ten decimal number -2 347 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
1 - 100 0000 1010 - 0010 0101 0110 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

(64 bits IEEE 754)

Number -2 348 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Number -2 346 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Convert to 64 bit double precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number -2 347 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:56 UTC (GMT)
Number -8 191.87 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:56 UTC (GMT)
Number -1 302.124 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:56 UTC (GMT)
Number 1 658 712 511.3 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:56 UTC (GMT)
Number 123 123 123 118 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:56 UTC (GMT)
Number -0.016 738 891 601 562 531 086 244 689 504 383 131 861 686 706 59 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:56 UTC (GMT)
Number -9 134.79 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:56 UTC (GMT)
Number 11 110 110 000.011 001 100 110 011 001 100 110 011 001 100 110 011 001 100 110 011 001 100 11 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:56 UTC (GMT)
Number 1.797 693 134 862 315 708 145 274 2 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:56 UTC (GMT)
Number 811 825 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 00:56 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal