Convert the Number -1 996 059 340 857 991 660 to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number. Detailed Explanations

Number -1 996 059 340 857 991 660(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (base 2) the integer number.


1. Start with the positive version of the number:

|-1 996 059 340 857 991 660| = 1 996 059 340 857 991 660

2. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 1 996 059 340 857 991 660 ÷ 2 = 998 029 670 428 995 830 + 0;
  • 998 029 670 428 995 830 ÷ 2 = 499 014 835 214 497 915 + 0;
  • 499 014 835 214 497 915 ÷ 2 = 249 507 417 607 248 957 + 1;
  • 249 507 417 607 248 957 ÷ 2 = 124 753 708 803 624 478 + 1;
  • 124 753 708 803 624 478 ÷ 2 = 62 376 854 401 812 239 + 0;
  • 62 376 854 401 812 239 ÷ 2 = 31 188 427 200 906 119 + 1;
  • 31 188 427 200 906 119 ÷ 2 = 15 594 213 600 453 059 + 1;
  • 15 594 213 600 453 059 ÷ 2 = 7 797 106 800 226 529 + 1;
  • 7 797 106 800 226 529 ÷ 2 = 3 898 553 400 113 264 + 1;
  • 3 898 553 400 113 264 ÷ 2 = 1 949 276 700 056 632 + 0;
  • 1 949 276 700 056 632 ÷ 2 = 974 638 350 028 316 + 0;
  • 974 638 350 028 316 ÷ 2 = 487 319 175 014 158 + 0;
  • 487 319 175 014 158 ÷ 2 = 243 659 587 507 079 + 0;
  • 243 659 587 507 079 ÷ 2 = 121 829 793 753 539 + 1;
  • 121 829 793 753 539 ÷ 2 = 60 914 896 876 769 + 1;
  • 60 914 896 876 769 ÷ 2 = 30 457 448 438 384 + 1;
  • 30 457 448 438 384 ÷ 2 = 15 228 724 219 192 + 0;
  • 15 228 724 219 192 ÷ 2 = 7 614 362 109 596 + 0;
  • 7 614 362 109 596 ÷ 2 = 3 807 181 054 798 + 0;
  • 3 807 181 054 798 ÷ 2 = 1 903 590 527 399 + 0;
  • 1 903 590 527 399 ÷ 2 = 951 795 263 699 + 1;
  • 951 795 263 699 ÷ 2 = 475 897 631 849 + 1;
  • 475 897 631 849 ÷ 2 = 237 948 815 924 + 1;
  • 237 948 815 924 ÷ 2 = 118 974 407 962 + 0;
  • 118 974 407 962 ÷ 2 = 59 487 203 981 + 0;
  • 59 487 203 981 ÷ 2 = 29 743 601 990 + 1;
  • 29 743 601 990 ÷ 2 = 14 871 800 995 + 0;
  • 14 871 800 995 ÷ 2 = 7 435 900 497 + 1;
  • 7 435 900 497 ÷ 2 = 3 717 950 248 + 1;
  • 3 717 950 248 ÷ 2 = 1 858 975 124 + 0;
  • 1 858 975 124 ÷ 2 = 929 487 562 + 0;
  • 929 487 562 ÷ 2 = 464 743 781 + 0;
  • 464 743 781 ÷ 2 = 232 371 890 + 1;
  • 232 371 890 ÷ 2 = 116 185 945 + 0;
  • 116 185 945 ÷ 2 = 58 092 972 + 1;
  • 58 092 972 ÷ 2 = 29 046 486 + 0;
  • 29 046 486 ÷ 2 = 14 523 243 + 0;
  • 14 523 243 ÷ 2 = 7 261 621 + 1;
  • 7 261 621 ÷ 2 = 3 630 810 + 1;
  • 3 630 810 ÷ 2 = 1 815 405 + 0;
  • 1 815 405 ÷ 2 = 907 702 + 1;
  • 907 702 ÷ 2 = 453 851 + 0;
  • 453 851 ÷ 2 = 226 925 + 1;
  • 226 925 ÷ 2 = 113 462 + 1;
  • 113 462 ÷ 2 = 56 731 + 0;
  • 56 731 ÷ 2 = 28 365 + 1;
  • 28 365 ÷ 2 = 14 182 + 1;
  • 14 182 ÷ 2 = 7 091 + 0;
  • 7 091 ÷ 2 = 3 545 + 1;
  • 3 545 ÷ 2 = 1 772 + 1;
  • 1 772 ÷ 2 = 886 + 0;
  • 886 ÷ 2 = 443 + 0;
  • 443 ÷ 2 = 221 + 1;
  • 221 ÷ 2 = 110 + 1;
  • 110 ÷ 2 = 55 + 0;
  • 55 ÷ 2 = 27 + 1;
  • 27 ÷ 2 = 13 + 1;
  • 13 ÷ 2 = 6 + 1;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

3. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


1 996 059 340 857 991 660(10) =


1 1011 1011 0011 0110 1101 0110 0101 0001 1010 0111 0000 1110 0001 1110 1100(2)



The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


4. Normalize the binary representation of the number.

Shift the decimal mark 60 positions to the left, so that only one non zero digit remains to the left of it:


1 996 059 340 857 991 660(10) =


1 1011 1011 0011 0110 1101 0110 0101 0001 1010 0111 0000 1110 0001 1110 1100(2) =


1 1011 1011 0011 0110 1101 0110 0101 0001 1010 0111 0000 1110 0001 1110 1100(2) × 20 =


1.1011 1011 0011 0110 1101 0110 0101 0001 1010 0111 0000 1110 0001 1110 1100(2) × 260


5. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 1 (a negative number)


Exponent (unadjusted): 60


Mantissa (not normalized):
1.1011 1011 0011 0110 1101 0110 0101 0001 1010 0111 0000 1110 0001 1110 1100


6. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


60 + 2(11-1) - 1 =


(60 + 1 023)(10) =


1 083(10)


7. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 083 ÷ 2 = 541 + 1;
  • 541 ÷ 2 = 270 + 1;
  • 270 ÷ 2 = 135 + 0;
  • 135 ÷ 2 = 67 + 1;
  • 67 ÷ 2 = 33 + 1;
  • 33 ÷ 2 = 16 + 1;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

8. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1083(10) =


100 0011 1011(2)


9. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 1011 1011 0011 0110 1101 0110 0101 0001 1010 0111 0000 1110 0001 1110 1100 =


1011 1011 0011 0110 1101 0110 0101 0001 1010 0111 0000 1110 0001


10. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
1 (a negative number)


Exponent (11 bits) =
100 0011 1011


Mantissa (52 bits) =
1011 1011 0011 0110 1101 0110 0101 0001 1010 0111 0000 1110 0001


The base ten decimal number -1 996 059 340 857 991 660 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
1 - 100 0011 1011 - 1011 1011 0011 0110 1101 0110 0101 0001 1010 0111 0000 1110 0001

(64 bits IEEE 754)

Number -1 996 059 340 857 991 661 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Number -1 996 059 340 857 991 659 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Convert to 64 bit double precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number -1 996 059 340 857 991 660 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 12:55 UTC (GMT)
Number -27.259 186 836 859 594 2 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 12:55 UTC (GMT)
Number -2 741.859 4 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 12:55 UTC (GMT)
Number 1.366 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 12:55 UTC (GMT)
Number -123 505 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 12:55 UTC (GMT)
Number -11 111 115 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 12:55 UTC (GMT)
Number 125 027 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 12:55 UTC (GMT)
Number 5 177 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 12:55 UTC (GMT)
Number 6.285 749 999 999 999 282 351 836 882 298 812 270 164 489 747 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 12:55 UTC (GMT)
Number -6.277 436 781 4 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 12:55 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal