Convert the Number -187.512 205 to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number. Detailed Explanations

Number -187.512 205(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (to base 2) the integer part of the number.

Convert to binary the fractional part of the number.


1. Start with the positive version of the number:

|-187.512 205| = 187.512 205

2. First, convert to binary (in base 2) the integer part: 187.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 187 ÷ 2 = 93 + 1;
  • 93 ÷ 2 = 46 + 1;
  • 46 ÷ 2 = 23 + 0;
  • 23 ÷ 2 = 11 + 1;
  • 11 ÷ 2 = 5 + 1;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

3. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


187(10) =


1011 1011(2)


4. Convert to binary (base 2) the fractional part: 0.512 205.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.512 205 × 2 = 1 + 0.024 41;
  • 2) 0.024 41 × 2 = 0 + 0.048 82;
  • 3) 0.048 82 × 2 = 0 + 0.097 64;
  • 4) 0.097 64 × 2 = 0 + 0.195 28;
  • 5) 0.195 28 × 2 = 0 + 0.390 56;
  • 6) 0.390 56 × 2 = 0 + 0.781 12;
  • 7) 0.781 12 × 2 = 1 + 0.562 24;
  • 8) 0.562 24 × 2 = 1 + 0.124 48;
  • 9) 0.124 48 × 2 = 0 + 0.248 96;
  • 10) 0.248 96 × 2 = 0 + 0.497 92;
  • 11) 0.497 92 × 2 = 0 + 0.995 84;
  • 12) 0.995 84 × 2 = 1 + 0.991 68;
  • 13) 0.991 68 × 2 = 1 + 0.983 36;
  • 14) 0.983 36 × 2 = 1 + 0.966 72;
  • 15) 0.966 72 × 2 = 1 + 0.933 44;
  • 16) 0.933 44 × 2 = 1 + 0.866 88;
  • 17) 0.866 88 × 2 = 1 + 0.733 76;
  • 18) 0.733 76 × 2 = 1 + 0.467 52;
  • 19) 0.467 52 × 2 = 0 + 0.935 04;
  • 20) 0.935 04 × 2 = 1 + 0.870 08;
  • 21) 0.870 08 × 2 = 1 + 0.740 16;
  • 22) 0.740 16 × 2 = 1 + 0.480 32;
  • 23) 0.480 32 × 2 = 0 + 0.960 64;
  • 24) 0.960 64 × 2 = 1 + 0.921 28;
  • 25) 0.921 28 × 2 = 1 + 0.842 56;
  • 26) 0.842 56 × 2 = 1 + 0.685 12;
  • 27) 0.685 12 × 2 = 1 + 0.370 24;
  • 28) 0.370 24 × 2 = 0 + 0.740 48;
  • 29) 0.740 48 × 2 = 1 + 0.480 96;
  • 30) 0.480 96 × 2 = 0 + 0.961 92;
  • 31) 0.961 92 × 2 = 1 + 0.923 84;
  • 32) 0.923 84 × 2 = 1 + 0.847 68;
  • 33) 0.847 68 × 2 = 1 + 0.695 36;
  • 34) 0.695 36 × 2 = 1 + 0.390 72;
  • 35) 0.390 72 × 2 = 0 + 0.781 44;
  • 36) 0.781 44 × 2 = 1 + 0.562 88;
  • 37) 0.562 88 × 2 = 1 + 0.125 76;
  • 38) 0.125 76 × 2 = 0 + 0.251 52;
  • 39) 0.251 52 × 2 = 0 + 0.503 04;
  • 40) 0.503 04 × 2 = 1 + 0.006 08;
  • 41) 0.006 08 × 2 = 0 + 0.012 16;
  • 42) 0.012 16 × 2 = 0 + 0.024 32;
  • 43) 0.024 32 × 2 = 0 + 0.048 64;
  • 44) 0.048 64 × 2 = 0 + 0.097 28;
  • 45) 0.097 28 × 2 = 0 + 0.194 56;
  • 46) 0.194 56 × 2 = 0 + 0.389 12;
  • 47) 0.389 12 × 2 = 0 + 0.778 24;
  • 48) 0.778 24 × 2 = 1 + 0.556 48;
  • 49) 0.556 48 × 2 = 1 + 0.112 96;
  • 50) 0.112 96 × 2 = 0 + 0.225 92;
  • 51) 0.225 92 × 2 = 0 + 0.451 84;
  • 52) 0.451 84 × 2 = 0 + 0.903 68;
  • 53) 0.903 68 × 2 = 1 + 0.807 36;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


5. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.512 205(10) =


0.1000 0011 0001 1111 1101 1101 1110 1011 1101 1001 0000 0001 1000 1(2)


6. Positive number before normalization:

187.512 205(10) =


1011 1011.1000 0011 0001 1111 1101 1101 1110 1011 1101 1001 0000 0001 1000 1(2)


The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


7. Normalize the binary representation of the number.

Shift the decimal mark 7 positions to the left, so that only one non zero digit remains to the left of it:


187.512 205(10) =


1011 1011.1000 0011 0001 1111 1101 1101 1110 1011 1101 1001 0000 0001 1000 1(2) =


1011 1011.1000 0011 0001 1111 1101 1101 1110 1011 1101 1001 0000 0001 1000 1(2) × 20 =


1.0111 0111 0000 0110 0011 1111 1011 1011 1101 0111 1011 0010 0000 0011 0001(2) × 27


8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 1 (a negative number)


Exponent (unadjusted): 7


Mantissa (not normalized):
1.0111 0111 0000 0110 0011 1111 1011 1011 1101 0111 1011 0010 0000 0011 0001


9. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


7 + 2(11-1) - 1 =


(7 + 1 023)(10) =


1 030(10)


10. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 030 ÷ 2 = 515 + 0;
  • 515 ÷ 2 = 257 + 1;
  • 257 ÷ 2 = 128 + 1;
  • 128 ÷ 2 = 64 + 0;
  • 64 ÷ 2 = 32 + 0;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

11. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1030(10) =


100 0000 0110(2)


12. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 0111 0111 0000 0110 0011 1111 1011 1011 1101 0111 1011 0010 0000 0011 0001 =


0111 0111 0000 0110 0011 1111 1011 1011 1101 0111 1011 0010 0000


13. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
1 (a negative number)


Exponent (11 bits) =
100 0000 0110


Mantissa (52 bits) =
0111 0111 0000 0110 0011 1111 1011 1011 1101 0111 1011 0010 0000


The base ten decimal number -187.512 205 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
1 - 100 0000 0110 - 0111 0111 0000 0110 0011 1111 1011 1011 1101 0111 1011 0010 0000

(64 bits IEEE 754)

Number -187.512 206 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Number -187.512 204 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Convert to 64 bit double precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number -187.512 205 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 02:18 UTC (GMT)
Number 17 211.67 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 02:18 UTC (GMT)
Number 941 520 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 02:18 UTC (GMT)
Number -17.020 804 1 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 02:18 UTC (GMT)
Number 5.166 7 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 02:18 UTC (GMT)
Number 29 680 811 214 598 735 659 021 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 02:18 UTC (GMT)
Number 110 202 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 02:18 UTC (GMT)
Number 24.065 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 02:18 UTC (GMT)
Number -4 602 512.215 206 2 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 02:18 UTC (GMT)
Number -0.044 6 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 28 02:18 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal