64bit IEEE 754: Decimal -> Double Precision Floating Point Binary: -1 624 528 430 000 001 Convert the Number to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number

Number -1 624 528 430 000 001(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. Start with the positive version of the number:

|-1 624 528 430 000 001| = 1 624 528 430 000 001

2. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 1 624 528 430 000 001 ÷ 2 = 812 264 215 000 000 + 1;
  • 812 264 215 000 000 ÷ 2 = 406 132 107 500 000 + 0;
  • 406 132 107 500 000 ÷ 2 = 203 066 053 750 000 + 0;
  • 203 066 053 750 000 ÷ 2 = 101 533 026 875 000 + 0;
  • 101 533 026 875 000 ÷ 2 = 50 766 513 437 500 + 0;
  • 50 766 513 437 500 ÷ 2 = 25 383 256 718 750 + 0;
  • 25 383 256 718 750 ÷ 2 = 12 691 628 359 375 + 0;
  • 12 691 628 359 375 ÷ 2 = 6 345 814 179 687 + 1;
  • 6 345 814 179 687 ÷ 2 = 3 172 907 089 843 + 1;
  • 3 172 907 089 843 ÷ 2 = 1 586 453 544 921 + 1;
  • 1 586 453 544 921 ÷ 2 = 793 226 772 460 + 1;
  • 793 226 772 460 ÷ 2 = 396 613 386 230 + 0;
  • 396 613 386 230 ÷ 2 = 198 306 693 115 + 0;
  • 198 306 693 115 ÷ 2 = 99 153 346 557 + 1;
  • 99 153 346 557 ÷ 2 = 49 576 673 278 + 1;
  • 49 576 673 278 ÷ 2 = 24 788 336 639 + 0;
  • 24 788 336 639 ÷ 2 = 12 394 168 319 + 1;
  • 12 394 168 319 ÷ 2 = 6 197 084 159 + 1;
  • 6 197 084 159 ÷ 2 = 3 098 542 079 + 1;
  • 3 098 542 079 ÷ 2 = 1 549 271 039 + 1;
  • 1 549 271 039 ÷ 2 = 774 635 519 + 1;
  • 774 635 519 ÷ 2 = 387 317 759 + 1;
  • 387 317 759 ÷ 2 = 193 658 879 + 1;
  • 193 658 879 ÷ 2 = 96 829 439 + 1;
  • 96 829 439 ÷ 2 = 48 414 719 + 1;
  • 48 414 719 ÷ 2 = 24 207 359 + 1;
  • 24 207 359 ÷ 2 = 12 103 679 + 1;
  • 12 103 679 ÷ 2 = 6 051 839 + 1;
  • 6 051 839 ÷ 2 = 3 025 919 + 1;
  • 3 025 919 ÷ 2 = 1 512 959 + 1;
  • 1 512 959 ÷ 2 = 756 479 + 1;
  • 756 479 ÷ 2 = 378 239 + 1;
  • 378 239 ÷ 2 = 189 119 + 1;
  • 189 119 ÷ 2 = 94 559 + 1;
  • 94 559 ÷ 2 = 47 279 + 1;
  • 47 279 ÷ 2 = 23 639 + 1;
  • 23 639 ÷ 2 = 11 819 + 1;
  • 11 819 ÷ 2 = 5 909 + 1;
  • 5 909 ÷ 2 = 2 954 + 1;
  • 2 954 ÷ 2 = 1 477 + 0;
  • 1 477 ÷ 2 = 738 + 1;
  • 738 ÷ 2 = 369 + 0;
  • 369 ÷ 2 = 184 + 1;
  • 184 ÷ 2 = 92 + 0;
  • 92 ÷ 2 = 46 + 0;
  • 46 ÷ 2 = 23 + 0;
  • 23 ÷ 2 = 11 + 1;
  • 11 ÷ 2 = 5 + 1;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

3. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


1 624 528 430 000 001(10) =


101 1100 0101 0111 1111 1111 1111 1111 1111 0110 0111 1000 0001(2)


4. Normalize the binary representation of the number.

Shift the decimal mark 50 positions to the left, so that only one non zero digit remains to the left of it:


1 624 528 430 000 001(10) =


101 1100 0101 0111 1111 1111 1111 1111 1111 0110 0111 1000 0001(2) =


101 1100 0101 0111 1111 1111 1111 1111 1111 0110 0111 1000 0001(2) × 20 =


1.0111 0001 0101 1111 1111 1111 1111 1111 1101 1001 1110 0000 01(2) × 250


5. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 1 (a negative number)


Exponent (unadjusted): 50


Mantissa (not normalized):
1.0111 0001 0101 1111 1111 1111 1111 1111 1101 1001 1110 0000 01


6. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


50 + 2(11-1) - 1 =


(50 + 1 023)(10) =


1 073(10)


7. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 073 ÷ 2 = 536 + 1;
  • 536 ÷ 2 = 268 + 0;
  • 268 ÷ 2 = 134 + 0;
  • 134 ÷ 2 = 67 + 0;
  • 67 ÷ 2 = 33 + 1;
  • 33 ÷ 2 = 16 + 1;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

8. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1073(10) =


100 0011 0001(2)


9. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by adding the necessary number of zeros to the right.


Mantissa (normalized) =


1. 01 1100 0101 0111 1111 1111 1111 1111 1111 0110 0111 1000 0001 00 =


0111 0001 0101 1111 1111 1111 1111 1111 1101 1001 1110 0000 0100


10. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
1 (a negative number)


Exponent (11 bits) =
100 0011 0001


Mantissa (52 bits) =
0111 0001 0101 1111 1111 1111 1111 1111 1101 1001 1110 0000 0100


The base ten decimal number -1 624 528 430 000 001 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
1 - 100 0011 0001 - 0111 0001 0101 1111 1111 1111 1111 1111 1101 1001 1110 0000 0100

(64 bits IEEE 754)
  • Sign (1 bit):

    • 1

      63
  • Exponent (11 bits):

    • 1

      62
    • 0

      61
    • 0

      60
    • 0

      59
    • 0

      58
    • 1

      57
    • 1

      56
    • 0

      55
    • 0

      54
    • 0

      53
    • 1

      52
  • Mantissa (52 bits):

    • 0

      51
    • 1

      50
    • 1

      49
    • 1

      48
    • 0

      47
    • 0

      46
    • 0

      45
    • 1

      44
    • 0

      43
    • 1

      42
    • 0

      41
    • 1

      40
    • 1

      39
    • 1

      38
    • 1

      37
    • 1

      36
    • 1

      35
    • 1

      34
    • 1

      33
    • 1

      32
    • 1

      31
    • 1

      30
    • 1

      29
    • 1

      28
    • 1

      27
    • 1

      26
    • 1

      25
    • 1

      24
    • 1

      23
    • 1

      22
    • 1

      21
    • 1

      20
    • 1

      19
    • 1

      18
    • 0

      17
    • 1

      16
    • 1

      15
    • 0

      14
    • 0

      13
    • 1

      12
    • 1

      11
    • 1

      10
    • 1

      9
    • 0

      8
    • 0

      7
    • 0

      6
    • 0

      5
    • 0

      4
    • 0

      3
    • 1

      2
    • 0

      1
    • 0

      0

Convert to 64 bit double precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number -1 624 528 430 000 001 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 17:28 UTC (GMT)
Number 1 100 000 000 011 010 101 010 000 000 000 000 000 000 000 000 000 000 000 000 000 035 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 17:28 UTC (GMT)
Number 1 725 761 719 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 17:28 UTC (GMT)
Number 22 196 390 985 780 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 17:28 UTC (GMT)
Number 43 119 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 17:28 UTC (GMT)
Number -0.004 999 999 999 999 2 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 17:28 UTC (GMT)
Number 2 653 686.374 5 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 17:28 UTC (GMT)
Number -4 597 471 532 103 499 776 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 17:28 UTC (GMT)
Number 63 963 067 867 040 178 995 780 102 991 155 504 781 403 607 690 158 440 329 453 668 964 717 614 564 863 635 332 802 261 114 548 389 486 992 764 488 460 760 717 408 719 257 160 876 724 870 511 613 241 717 048 017 209 090 137 249 739 341 225 706 030 736 435 854 532 114 324 515 494 140 598 092 336 705 726 392 132 987 035 066 530 861 154 641 899 276 318 826 216 742 022 402 305 108 030 492 924 200 706 583 297 991 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 17:28 UTC (GMT)
Number 775 138 563 026 841 643 920 900 311 534 845 888 548 831 670 145 088 322 889 842 649 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Nov 30 17:28 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =


    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100