64bit IEEE 754: Decimal ↗ Double Precision Floating Point Binary: -160.207 045 Convert the Number to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number

Number -160.207 045(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. Start with the positive version of the number:

|-160.207 045| = 160.207 045

2. First, convert to binary (in base 2) the integer part: 160.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 160 ÷ 2 = 80 + 0;
  • 80 ÷ 2 = 40 + 0;
  • 40 ÷ 2 = 20 + 0;
  • 20 ÷ 2 = 10 + 0;
  • 10 ÷ 2 = 5 + 0;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

3. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


160(10) =


1010 0000(2)


4. Convert to binary (base 2) the fractional part: 0.207 045.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.207 045 × 2 = 0 + 0.414 09;
  • 2) 0.414 09 × 2 = 0 + 0.828 18;
  • 3) 0.828 18 × 2 = 1 + 0.656 36;
  • 4) 0.656 36 × 2 = 1 + 0.312 72;
  • 5) 0.312 72 × 2 = 0 + 0.625 44;
  • 6) 0.625 44 × 2 = 1 + 0.250 88;
  • 7) 0.250 88 × 2 = 0 + 0.501 76;
  • 8) 0.501 76 × 2 = 1 + 0.003 52;
  • 9) 0.003 52 × 2 = 0 + 0.007 04;
  • 10) 0.007 04 × 2 = 0 + 0.014 08;
  • 11) 0.014 08 × 2 = 0 + 0.028 16;
  • 12) 0.028 16 × 2 = 0 + 0.056 32;
  • 13) 0.056 32 × 2 = 0 + 0.112 64;
  • 14) 0.112 64 × 2 = 0 + 0.225 28;
  • 15) 0.225 28 × 2 = 0 + 0.450 56;
  • 16) 0.450 56 × 2 = 0 + 0.901 12;
  • 17) 0.901 12 × 2 = 1 + 0.802 24;
  • 18) 0.802 24 × 2 = 1 + 0.604 48;
  • 19) 0.604 48 × 2 = 1 + 0.208 96;
  • 20) 0.208 96 × 2 = 0 + 0.417 92;
  • 21) 0.417 92 × 2 = 0 + 0.835 84;
  • 22) 0.835 84 × 2 = 1 + 0.671 68;
  • 23) 0.671 68 × 2 = 1 + 0.343 36;
  • 24) 0.343 36 × 2 = 0 + 0.686 72;
  • 25) 0.686 72 × 2 = 1 + 0.373 44;
  • 26) 0.373 44 × 2 = 0 + 0.746 88;
  • 27) 0.746 88 × 2 = 1 + 0.493 76;
  • 28) 0.493 76 × 2 = 0 + 0.987 52;
  • 29) 0.987 52 × 2 = 1 + 0.975 04;
  • 30) 0.975 04 × 2 = 1 + 0.950 08;
  • 31) 0.950 08 × 2 = 1 + 0.900 16;
  • 32) 0.900 16 × 2 = 1 + 0.800 32;
  • 33) 0.800 32 × 2 = 1 + 0.600 64;
  • 34) 0.600 64 × 2 = 1 + 0.201 28;
  • 35) 0.201 28 × 2 = 0 + 0.402 56;
  • 36) 0.402 56 × 2 = 0 + 0.805 12;
  • 37) 0.805 12 × 2 = 1 + 0.610 24;
  • 38) 0.610 24 × 2 = 1 + 0.220 48;
  • 39) 0.220 48 × 2 = 0 + 0.440 96;
  • 40) 0.440 96 × 2 = 0 + 0.881 92;
  • 41) 0.881 92 × 2 = 1 + 0.763 84;
  • 42) 0.763 84 × 2 = 1 + 0.527 68;
  • 43) 0.527 68 × 2 = 1 + 0.055 36;
  • 44) 0.055 36 × 2 = 0 + 0.110 72;
  • 45) 0.110 72 × 2 = 0 + 0.221 44;
  • 46) 0.221 44 × 2 = 0 + 0.442 88;
  • 47) 0.442 88 × 2 = 0 + 0.885 76;
  • 48) 0.885 76 × 2 = 1 + 0.771 52;
  • 49) 0.771 52 × 2 = 1 + 0.543 04;
  • 50) 0.543 04 × 2 = 1 + 0.086 08;
  • 51) 0.086 08 × 2 = 0 + 0.172 16;
  • 52) 0.172 16 × 2 = 0 + 0.344 32;
  • 53) 0.344 32 × 2 = 0 + 0.688 64;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


5. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.207 045(10) =


0.0011 0101 0000 0000 1110 0110 1010 1111 1100 1100 1110 0001 1100 0(2)


6. Positive number before normalization:

160.207 045(10) =


1010 0000.0011 0101 0000 0000 1110 0110 1010 1111 1100 1100 1110 0001 1100 0(2)

7. Normalize the binary representation of the number.

Shift the decimal mark 7 positions to the left, so that only one non zero digit remains to the left of it:


160.207 045(10) =


1010 0000.0011 0101 0000 0000 1110 0110 1010 1111 1100 1100 1110 0001 1100 0(2) =


1010 0000.0011 0101 0000 0000 1110 0110 1010 1111 1100 1100 1110 0001 1100 0(2) × 20 =


1.0100 0000 0110 1010 0000 0001 1100 1101 0101 1111 1001 1001 1100 0011 1000(2) × 27


8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 1 (a negative number)


Exponent (unadjusted): 7


Mantissa (not normalized):
1.0100 0000 0110 1010 0000 0001 1100 1101 0101 1111 1001 1001 1100 0011 1000


9. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


7 + 2(11-1) - 1 =


(7 + 1 023)(10) =


1 030(10)


10. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 030 ÷ 2 = 515 + 0;
  • 515 ÷ 2 = 257 + 1;
  • 257 ÷ 2 = 128 + 1;
  • 128 ÷ 2 = 64 + 0;
  • 64 ÷ 2 = 32 + 0;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

11. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1030(10) =


100 0000 0110(2)


12. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 0100 0000 0110 1010 0000 0001 1100 1101 0101 1111 1001 1001 1100 0011 1000 =


0100 0000 0110 1010 0000 0001 1100 1101 0101 1111 1001 1001 1100


13. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
1 (a negative number)


Exponent (11 bits) =
100 0000 0110


Mantissa (52 bits) =
0100 0000 0110 1010 0000 0001 1100 1101 0101 1111 1001 1001 1100


The base ten decimal number -160.207 045 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
1 - 100 0000 0110 - 0100 0000 0110 1010 0000 0001 1100 1101 0101 1111 1001 1001 1100

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 0.001 111 111 111 1 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 14 01:45 UTC (GMT)
Number 5 855 287 647 294 685 701 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 14 01:45 UTC (GMT)
Number -2 060.6 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 14 01:45 UTC (GMT)
Number 17 010 027 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 14 01:45 UTC (GMT)
Number 1.252 014 999 999 999 82 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 14 01:45 UTC (GMT)
Number 4 096.001 953 125 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 14 01:45 UTC (GMT)
Number 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 190 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 14 01:45 UTC (GMT)
Number 35 840 877 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 14 01:45 UTC (GMT)
Number -3.25 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 14 01:45 UTC (GMT)
Number 100 000 094 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Sep 14 01:45 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100