64bit IEEE 754: Decimal ↗ Double Precision Floating Point Binary: -160.207 004 Convert the Number to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number

Number -160.207 004(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. Start with the positive version of the number:

|-160.207 004| = 160.207 004

2. First, convert to binary (in base 2) the integer part: 160.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 160 ÷ 2 = 80 + 0;
  • 80 ÷ 2 = 40 + 0;
  • 40 ÷ 2 = 20 + 0;
  • 20 ÷ 2 = 10 + 0;
  • 10 ÷ 2 = 5 + 0;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

3. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


160(10) =


1010 0000(2)


4. Convert to binary (base 2) the fractional part: 0.207 004.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.207 004 × 2 = 0 + 0.414 008;
  • 2) 0.414 008 × 2 = 0 + 0.828 016;
  • 3) 0.828 016 × 2 = 1 + 0.656 032;
  • 4) 0.656 032 × 2 = 1 + 0.312 064;
  • 5) 0.312 064 × 2 = 0 + 0.624 128;
  • 6) 0.624 128 × 2 = 1 + 0.248 256;
  • 7) 0.248 256 × 2 = 0 + 0.496 512;
  • 8) 0.496 512 × 2 = 0 + 0.993 024;
  • 9) 0.993 024 × 2 = 1 + 0.986 048;
  • 10) 0.986 048 × 2 = 1 + 0.972 096;
  • 11) 0.972 096 × 2 = 1 + 0.944 192;
  • 12) 0.944 192 × 2 = 1 + 0.888 384;
  • 13) 0.888 384 × 2 = 1 + 0.776 768;
  • 14) 0.776 768 × 2 = 1 + 0.553 536;
  • 15) 0.553 536 × 2 = 1 + 0.107 072;
  • 16) 0.107 072 × 2 = 0 + 0.214 144;
  • 17) 0.214 144 × 2 = 0 + 0.428 288;
  • 18) 0.428 288 × 2 = 0 + 0.856 576;
  • 19) 0.856 576 × 2 = 1 + 0.713 152;
  • 20) 0.713 152 × 2 = 1 + 0.426 304;
  • 21) 0.426 304 × 2 = 0 + 0.852 608;
  • 22) 0.852 608 × 2 = 1 + 0.705 216;
  • 23) 0.705 216 × 2 = 1 + 0.410 432;
  • 24) 0.410 432 × 2 = 0 + 0.820 864;
  • 25) 0.820 864 × 2 = 1 + 0.641 728;
  • 26) 0.641 728 × 2 = 1 + 0.283 456;
  • 27) 0.283 456 × 2 = 0 + 0.566 912;
  • 28) 0.566 912 × 2 = 1 + 0.133 824;
  • 29) 0.133 824 × 2 = 0 + 0.267 648;
  • 30) 0.267 648 × 2 = 0 + 0.535 296;
  • 31) 0.535 296 × 2 = 1 + 0.070 592;
  • 32) 0.070 592 × 2 = 0 + 0.141 184;
  • 33) 0.141 184 × 2 = 0 + 0.282 368;
  • 34) 0.282 368 × 2 = 0 + 0.564 736;
  • 35) 0.564 736 × 2 = 1 + 0.129 472;
  • 36) 0.129 472 × 2 = 0 + 0.258 944;
  • 37) 0.258 944 × 2 = 0 + 0.517 888;
  • 38) 0.517 888 × 2 = 1 + 0.035 776;
  • 39) 0.035 776 × 2 = 0 + 0.071 552;
  • 40) 0.071 552 × 2 = 0 + 0.143 104;
  • 41) 0.143 104 × 2 = 0 + 0.286 208;
  • 42) 0.286 208 × 2 = 0 + 0.572 416;
  • 43) 0.572 416 × 2 = 1 + 0.144 832;
  • 44) 0.144 832 × 2 = 0 + 0.289 664;
  • 45) 0.289 664 × 2 = 0 + 0.579 328;
  • 46) 0.579 328 × 2 = 1 + 0.158 656;
  • 47) 0.158 656 × 2 = 0 + 0.317 312;
  • 48) 0.317 312 × 2 = 0 + 0.634 624;
  • 49) 0.634 624 × 2 = 1 + 0.269 248;
  • 50) 0.269 248 × 2 = 0 + 0.538 496;
  • 51) 0.538 496 × 2 = 1 + 0.076 992;
  • 52) 0.076 992 × 2 = 0 + 0.153 984;
  • 53) 0.153 984 × 2 = 0 + 0.307 968;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


5. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.207 004(10) =


0.0011 0100 1111 1110 0011 0110 1101 0010 0010 0100 0010 0100 1010 0(2)


6. Positive number before normalization:

160.207 004(10) =


1010 0000.0011 0100 1111 1110 0011 0110 1101 0010 0010 0100 0010 0100 1010 0(2)

7. Normalize the binary representation of the number.

Shift the decimal mark 7 positions to the left, so that only one non zero digit remains to the left of it:


160.207 004(10) =


1010 0000.0011 0100 1111 1110 0011 0110 1101 0010 0010 0100 0010 0100 1010 0(2) =


1010 0000.0011 0100 1111 1110 0011 0110 1101 0010 0010 0100 0010 0100 1010 0(2) × 20 =


1.0100 0000 0110 1001 1111 1100 0110 1101 1010 0100 0100 1000 0100 1001 0100(2) × 27


8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 1 (a negative number)


Exponent (unadjusted): 7


Mantissa (not normalized):
1.0100 0000 0110 1001 1111 1100 0110 1101 1010 0100 0100 1000 0100 1001 0100


9. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


7 + 2(11-1) - 1 =


(7 + 1 023)(10) =


1 030(10)


10. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 030 ÷ 2 = 515 + 0;
  • 515 ÷ 2 = 257 + 1;
  • 257 ÷ 2 = 128 + 1;
  • 128 ÷ 2 = 64 + 0;
  • 64 ÷ 2 = 32 + 0;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

11. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1030(10) =


100 0000 0110(2)


12. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 0100 0000 0110 1001 1111 1100 0110 1101 1010 0100 0100 1000 0100 1001 0100 =


0100 0000 0110 1001 1111 1100 0110 1101 1010 0100 0100 1000 0100


13. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
1 (a negative number)


Exponent (11 bits) =
100 0000 0110


Mantissa (52 bits) =
0100 0000 0110 1001 1111 1100 0110 1101 1010 0100 0100 1000 0100


The base ten decimal number -160.207 004 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
1 - 100 0000 0110 - 0100 0000 0110 1001 1111 1100 0110 1101 1010 0100 0100 1000 0100

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 0.000 524 2 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 02:52 UTC (GMT)
Number 1 223.625 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 02:52 UTC (GMT)
Number -0.013 661 458 1 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 02:52 UTC (GMT)
Number 2 345 717 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 02:51 UTC (GMT)
Number 234.88 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 02:51 UTC (GMT)
Number 16 666 646 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 02:51 UTC (GMT)
Number 260 481 679 632 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 02:51 UTC (GMT)
Number 1 152 921 504 623 690 337 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 02:51 UTC (GMT)
Number 1 001 192 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 02:51 UTC (GMT)
Number -150.208 091 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 02:51 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100