Convert the Number -100 000 000 000 000 013 to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number. Detailed Explanations

Number -100 000 000 000 000 013(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (base 2) the integer number.


1. Start with the positive version of the number:

|-100 000 000 000 000 013| = 100 000 000 000 000 013

2. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 100 000 000 000 000 013 ÷ 2 = 50 000 000 000 000 006 + 1;
  • 50 000 000 000 000 006 ÷ 2 = 25 000 000 000 000 003 + 0;
  • 25 000 000 000 000 003 ÷ 2 = 12 500 000 000 000 001 + 1;
  • 12 500 000 000 000 001 ÷ 2 = 6 250 000 000 000 000 + 1;
  • 6 250 000 000 000 000 ÷ 2 = 3 125 000 000 000 000 + 0;
  • 3 125 000 000 000 000 ÷ 2 = 1 562 500 000 000 000 + 0;
  • 1 562 500 000 000 000 ÷ 2 = 781 250 000 000 000 + 0;
  • 781 250 000 000 000 ÷ 2 = 390 625 000 000 000 + 0;
  • 390 625 000 000 000 ÷ 2 = 195 312 500 000 000 + 0;
  • 195 312 500 000 000 ÷ 2 = 97 656 250 000 000 + 0;
  • 97 656 250 000 000 ÷ 2 = 48 828 125 000 000 + 0;
  • 48 828 125 000 000 ÷ 2 = 24 414 062 500 000 + 0;
  • 24 414 062 500 000 ÷ 2 = 12 207 031 250 000 + 0;
  • 12 207 031 250 000 ÷ 2 = 6 103 515 625 000 + 0;
  • 6 103 515 625 000 ÷ 2 = 3 051 757 812 500 + 0;
  • 3 051 757 812 500 ÷ 2 = 1 525 878 906 250 + 0;
  • 1 525 878 906 250 ÷ 2 = 762 939 453 125 + 0;
  • 762 939 453 125 ÷ 2 = 381 469 726 562 + 1;
  • 381 469 726 562 ÷ 2 = 190 734 863 281 + 0;
  • 190 734 863 281 ÷ 2 = 95 367 431 640 + 1;
  • 95 367 431 640 ÷ 2 = 47 683 715 820 + 0;
  • 47 683 715 820 ÷ 2 = 23 841 857 910 + 0;
  • 23 841 857 910 ÷ 2 = 11 920 928 955 + 0;
  • 11 920 928 955 ÷ 2 = 5 960 464 477 + 1;
  • 5 960 464 477 ÷ 2 = 2 980 232 238 + 1;
  • 2 980 232 238 ÷ 2 = 1 490 116 119 + 0;
  • 1 490 116 119 ÷ 2 = 745 058 059 + 1;
  • 745 058 059 ÷ 2 = 372 529 029 + 1;
  • 372 529 029 ÷ 2 = 186 264 514 + 1;
  • 186 264 514 ÷ 2 = 93 132 257 + 0;
  • 93 132 257 ÷ 2 = 46 566 128 + 1;
  • 46 566 128 ÷ 2 = 23 283 064 + 0;
  • 23 283 064 ÷ 2 = 11 641 532 + 0;
  • 11 641 532 ÷ 2 = 5 820 766 + 0;
  • 5 820 766 ÷ 2 = 2 910 383 + 0;
  • 2 910 383 ÷ 2 = 1 455 191 + 1;
  • 1 455 191 ÷ 2 = 727 595 + 1;
  • 727 595 ÷ 2 = 363 797 + 1;
  • 363 797 ÷ 2 = 181 898 + 1;
  • 181 898 ÷ 2 = 90 949 + 0;
  • 90 949 ÷ 2 = 45 474 + 1;
  • 45 474 ÷ 2 = 22 737 + 0;
  • 22 737 ÷ 2 = 11 368 + 1;
  • 11 368 ÷ 2 = 5 684 + 0;
  • 5 684 ÷ 2 = 2 842 + 0;
  • 2 842 ÷ 2 = 1 421 + 0;
  • 1 421 ÷ 2 = 710 + 1;
  • 710 ÷ 2 = 355 + 0;
  • 355 ÷ 2 = 177 + 1;
  • 177 ÷ 2 = 88 + 1;
  • 88 ÷ 2 = 44 + 0;
  • 44 ÷ 2 = 22 + 0;
  • 22 ÷ 2 = 11 + 0;
  • 11 ÷ 2 = 5 + 1;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

3. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


100 000 000 000 000 013(10) =


1 0110 0011 0100 0101 0111 1000 0101 1101 1000 1010 0000 0000 0000 1101(2)



The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


4. Normalize the binary representation of the number.

Shift the decimal mark 56 positions to the left, so that only one non zero digit remains to the left of it:


100 000 000 000 000 013(10) =


1 0110 0011 0100 0101 0111 1000 0101 1101 1000 1010 0000 0000 0000 1101(2) =


1 0110 0011 0100 0101 0111 1000 0101 1101 1000 1010 0000 0000 0000 1101(2) × 20 =


1.0110 0011 0100 0101 0111 1000 0101 1101 1000 1010 0000 0000 0000 1101(2) × 256


5. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 1 (a negative number)


Exponent (unadjusted): 56


Mantissa (not normalized):
1.0110 0011 0100 0101 0111 1000 0101 1101 1000 1010 0000 0000 0000 1101


6. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


56 + 2(11-1) - 1 =


(56 + 1 023)(10) =


1 079(10)


7. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 1 079 ÷ 2 = 539 + 1;
  • 539 ÷ 2 = 269 + 1;
  • 269 ÷ 2 = 134 + 1;
  • 134 ÷ 2 = 67 + 0;
  • 67 ÷ 2 = 33 + 1;
  • 33 ÷ 2 = 16 + 1;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

8. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


1079(10) =


100 0011 0111(2)


9. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 0110 0011 0100 0101 0111 1000 0101 1101 1000 1010 0000 0000 0000 1101 =


0110 0011 0100 0101 0111 1000 0101 1101 1000 1010 0000 0000 0000


10. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
1 (a negative number)


Exponent (11 bits) =
100 0011 0111


Mantissa (52 bits) =
0110 0011 0100 0101 0111 1000 0101 1101 1000 1010 0000 0000 0000


The base ten decimal number -100 000 000 000 000 013 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
1 - 100 0011 0111 - 0110 0011 0100 0101 0111 1000 0101 1101 1000 1010 0000 0000 0000

(64 bits IEEE 754)

Number -100 000 000 000 000 014 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Number -100 000 000 000 000 012 converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point representation = ?

Convert to 64 bit double precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number -100 000 000 000 000 013 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 13:42 UTC (GMT)
Number 129 077.909 05 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 13:41 UTC (GMT)
Number 18 893.5 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 13:41 UTC (GMT)
Number 10 100 001 110 010 005 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 13:41 UTC (GMT)
Number 62 753.513 596 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 13:41 UTC (GMT)
Number 466 881 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 13:41 UTC (GMT)
Number 646 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 13:41 UTC (GMT)
Number 56 865 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 13:41 UTC (GMT)
Number 0.913 15 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 13:41 UTC (GMT)
Number 16.050 06 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Oct 03 13:41 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal