32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 970 000 000 000 000 000 000 000 000 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 970 000 000 000 000 000 000 000 000(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 970 000 000 000 000 000 000 000 000 ÷ 2 = 485 000 000 000 000 000 000 000 000 + 0;
  • 485 000 000 000 000 000 000 000 000 ÷ 2 = 242 500 000 000 000 000 000 000 000 + 0;
  • 242 500 000 000 000 000 000 000 000 ÷ 2 = 121 250 000 000 000 000 000 000 000 + 0;
  • 121 250 000 000 000 000 000 000 000 ÷ 2 = 60 625 000 000 000 000 000 000 000 + 0;
  • 60 625 000 000 000 000 000 000 000 ÷ 2 = 30 312 500 000 000 000 000 000 000 + 0;
  • 30 312 500 000 000 000 000 000 000 ÷ 2 = 15 156 250 000 000 000 000 000 000 + 0;
  • 15 156 250 000 000 000 000 000 000 ÷ 2 = 7 578 125 000 000 000 000 000 000 + 0;
  • 7 578 125 000 000 000 000 000 000 ÷ 2 = 3 789 062 500 000 000 000 000 000 + 0;
  • 3 789 062 500 000 000 000 000 000 ÷ 2 = 1 894 531 250 000 000 000 000 000 + 0;
  • 1 894 531 250 000 000 000 000 000 ÷ 2 = 947 265 625 000 000 000 000 000 + 0;
  • 947 265 625 000 000 000 000 000 ÷ 2 = 473 632 812 500 000 000 000 000 + 0;
  • 473 632 812 500 000 000 000 000 ÷ 2 = 236 816 406 250 000 000 000 000 + 0;
  • 236 816 406 250 000 000 000 000 ÷ 2 = 118 408 203 125 000 000 000 000 + 0;
  • 118 408 203 125 000 000 000 000 ÷ 2 = 59 204 101 562 500 000 000 000 + 0;
  • 59 204 101 562 500 000 000 000 ÷ 2 = 29 602 050 781 250 000 000 000 + 0;
  • 29 602 050 781 250 000 000 000 ÷ 2 = 14 801 025 390 625 000 000 000 + 0;
  • 14 801 025 390 625 000 000 000 ÷ 2 = 7 400 512 695 312 500 000 000 + 0;
  • 7 400 512 695 312 500 000 000 ÷ 2 = 3 700 256 347 656 250 000 000 + 0;
  • 3 700 256 347 656 250 000 000 ÷ 2 = 1 850 128 173 828 125 000 000 + 0;
  • 1 850 128 173 828 125 000 000 ÷ 2 = 925 064 086 914 062 500 000 + 0;
  • 925 064 086 914 062 500 000 ÷ 2 = 462 532 043 457 031 250 000 + 0;
  • 462 532 043 457 031 250 000 ÷ 2 = 231 266 021 728 515 625 000 + 0;
  • 231 266 021 728 515 625 000 ÷ 2 = 115 633 010 864 257 812 500 + 0;
  • 115 633 010 864 257 812 500 ÷ 2 = 57 816 505 432 128 906 250 + 0;
  • 57 816 505 432 128 906 250 ÷ 2 = 28 908 252 716 064 453 125 + 0;
  • 28 908 252 716 064 453 125 ÷ 2 = 14 454 126 358 032 226 562 + 1;
  • 14 454 126 358 032 226 562 ÷ 2 = 7 227 063 179 016 113 281 + 0;
  • 7 227 063 179 016 113 281 ÷ 2 = 3 613 531 589 508 056 640 + 1;
  • 3 613 531 589 508 056 640 ÷ 2 = 1 806 765 794 754 028 320 + 0;
  • 1 806 765 794 754 028 320 ÷ 2 = 903 382 897 377 014 160 + 0;
  • 903 382 897 377 014 160 ÷ 2 = 451 691 448 688 507 080 + 0;
  • 451 691 448 688 507 080 ÷ 2 = 225 845 724 344 253 540 + 0;
  • 225 845 724 344 253 540 ÷ 2 = 112 922 862 172 126 770 + 0;
  • 112 922 862 172 126 770 ÷ 2 = 56 461 431 086 063 385 + 0;
  • 56 461 431 086 063 385 ÷ 2 = 28 230 715 543 031 692 + 1;
  • 28 230 715 543 031 692 ÷ 2 = 14 115 357 771 515 846 + 0;
  • 14 115 357 771 515 846 ÷ 2 = 7 057 678 885 757 923 + 0;
  • 7 057 678 885 757 923 ÷ 2 = 3 528 839 442 878 961 + 1;
  • 3 528 839 442 878 961 ÷ 2 = 1 764 419 721 439 480 + 1;
  • 1 764 419 721 439 480 ÷ 2 = 882 209 860 719 740 + 0;
  • 882 209 860 719 740 ÷ 2 = 441 104 930 359 870 + 0;
  • 441 104 930 359 870 ÷ 2 = 220 552 465 179 935 + 0;
  • 220 552 465 179 935 ÷ 2 = 110 276 232 589 967 + 1;
  • 110 276 232 589 967 ÷ 2 = 55 138 116 294 983 + 1;
  • 55 138 116 294 983 ÷ 2 = 27 569 058 147 491 + 1;
  • 27 569 058 147 491 ÷ 2 = 13 784 529 073 745 + 1;
  • 13 784 529 073 745 ÷ 2 = 6 892 264 536 872 + 1;
  • 6 892 264 536 872 ÷ 2 = 3 446 132 268 436 + 0;
  • 3 446 132 268 436 ÷ 2 = 1 723 066 134 218 + 0;
  • 1 723 066 134 218 ÷ 2 = 861 533 067 109 + 0;
  • 861 533 067 109 ÷ 2 = 430 766 533 554 + 1;
  • 430 766 533 554 ÷ 2 = 215 383 266 777 + 0;
  • 215 383 266 777 ÷ 2 = 107 691 633 388 + 1;
  • 107 691 633 388 ÷ 2 = 53 845 816 694 + 0;
  • 53 845 816 694 ÷ 2 = 26 922 908 347 + 0;
  • 26 922 908 347 ÷ 2 = 13 461 454 173 + 1;
  • 13 461 454 173 ÷ 2 = 6 730 727 086 + 1;
  • 6 730 727 086 ÷ 2 = 3 365 363 543 + 0;
  • 3 365 363 543 ÷ 2 = 1 682 681 771 + 1;
  • 1 682 681 771 ÷ 2 = 841 340 885 + 1;
  • 841 340 885 ÷ 2 = 420 670 442 + 1;
  • 420 670 442 ÷ 2 = 210 335 221 + 0;
  • 210 335 221 ÷ 2 = 105 167 610 + 1;
  • 105 167 610 ÷ 2 = 52 583 805 + 0;
  • 52 583 805 ÷ 2 = 26 291 902 + 1;
  • 26 291 902 ÷ 2 = 13 145 951 + 0;
  • 13 145 951 ÷ 2 = 6 572 975 + 1;
  • 6 572 975 ÷ 2 = 3 286 487 + 1;
  • 3 286 487 ÷ 2 = 1 643 243 + 1;
  • 1 643 243 ÷ 2 = 821 621 + 1;
  • 821 621 ÷ 2 = 410 810 + 1;
  • 410 810 ÷ 2 = 205 405 + 0;
  • 205 405 ÷ 2 = 102 702 + 1;
  • 102 702 ÷ 2 = 51 351 + 0;
  • 51 351 ÷ 2 = 25 675 + 1;
  • 25 675 ÷ 2 = 12 837 + 1;
  • 12 837 ÷ 2 = 6 418 + 1;
  • 6 418 ÷ 2 = 3 209 + 0;
  • 3 209 ÷ 2 = 1 604 + 1;
  • 1 604 ÷ 2 = 802 + 0;
  • 802 ÷ 2 = 401 + 0;
  • 401 ÷ 2 = 200 + 1;
  • 200 ÷ 2 = 100 + 0;
  • 100 ÷ 2 = 50 + 0;
  • 50 ÷ 2 = 25 + 0;
  • 25 ÷ 2 = 12 + 1;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


970 000 000 000 000 000 000 000 000(10) =


11 0010 0010 0101 1101 0111 1101 0101 1101 1001 0100 0111 1100 0110 0100 0000 1010 0000 0000 0000 0000 0000 0000(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 89 positions to the left, so that only one non zero digit remains to the left of it:


970 000 000 000 000 000 000 000 000(10) =


11 0010 0010 0101 1101 0111 1101 0101 1101 1001 0100 0111 1100 0110 0100 0000 1010 0000 0000 0000 0000 0000 0000(2) =


11 0010 0010 0101 1101 0111 1101 0101 1101 1001 0100 0111 1100 0110 0100 0000 1010 0000 0000 0000 0000 0000 0000(2) × 20 =


1.1001 0001 0010 1110 1011 1110 1010 1110 1100 1010 0011 1110 0011 0010 0000 0101 0000 0000 0000 0000 0000 0000 0(2) × 289


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 89


Mantissa (not normalized):
1.1001 0001 0010 1110 1011 1110 1010 1110 1100 1010 0011 1110 0011 0010 0000 0101 0000 0000 0000 0000 0000 0000 0


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


89 + 2(8-1) - 1 =


(89 + 127)(10) =


216(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 216 ÷ 2 = 108 + 0;
  • 108 ÷ 2 = 54 + 0;
  • 54 ÷ 2 = 27 + 0;
  • 27 ÷ 2 = 13 + 1;
  • 13 ÷ 2 = 6 + 1;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


216(10) =


1101 1000(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 100 1000 1001 0111 0101 1111 01 0101 1101 1001 0100 0111 1100 0110 0100 0000 1010 0000 0000 0000 0000 0000 0000 =


100 1000 1001 0111 0101 1111


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1101 1000


Mantissa (23 bits) =
100 1000 1001 0111 0101 1111


The base ten decimal number 970 000 000 000 000 000 000 000 000 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1101 1000 - 100 1000 1001 0111 0101 1111

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 91 026 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 18 11:38 UTC (GMT)
Number 11 101 000 011 101 110 101 010 001 100 098 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 18 11:38 UTC (GMT)
Number 47 251 328 263 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 18 11:38 UTC (GMT)
Number 110 000 011 001 100 000 000 000 000 046 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 18 11:38 UTC (GMT)
Number 10 100 111 111 110 101 010 101 010 099 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 18 11:38 UTC (GMT)
Number 100 100 126 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 18 11:38 UTC (GMT)
Number 122 298 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 18 11:38 UTC (GMT)
Number 12 345 542 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 18 11:38 UTC (GMT)
Number -611 940 965 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 18 11:38 UTC (GMT)
Number 888 849 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 18 11:38 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111