Convert the Number 865 985 647 to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number. Detailed Explanations

Number 865 985 647(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (base 2) the integer number.


1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 865 985 647 ÷ 2 = 432 992 823 + 1;
  • 432 992 823 ÷ 2 = 216 496 411 + 1;
  • 216 496 411 ÷ 2 = 108 248 205 + 1;
  • 108 248 205 ÷ 2 = 54 124 102 + 1;
  • 54 124 102 ÷ 2 = 27 062 051 + 0;
  • 27 062 051 ÷ 2 = 13 531 025 + 1;
  • 13 531 025 ÷ 2 = 6 765 512 + 1;
  • 6 765 512 ÷ 2 = 3 382 756 + 0;
  • 3 382 756 ÷ 2 = 1 691 378 + 0;
  • 1 691 378 ÷ 2 = 845 689 + 0;
  • 845 689 ÷ 2 = 422 844 + 1;
  • 422 844 ÷ 2 = 211 422 + 0;
  • 211 422 ÷ 2 = 105 711 + 0;
  • 105 711 ÷ 2 = 52 855 + 1;
  • 52 855 ÷ 2 = 26 427 + 1;
  • 26 427 ÷ 2 = 13 213 + 1;
  • 13 213 ÷ 2 = 6 606 + 1;
  • 6 606 ÷ 2 = 3 303 + 0;
  • 3 303 ÷ 2 = 1 651 + 1;
  • 1 651 ÷ 2 = 825 + 1;
  • 825 ÷ 2 = 412 + 1;
  • 412 ÷ 2 = 206 + 0;
  • 206 ÷ 2 = 103 + 0;
  • 103 ÷ 2 = 51 + 1;
  • 51 ÷ 2 = 25 + 1;
  • 25 ÷ 2 = 12 + 1;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


865 985 647(10) =


11 0011 1001 1101 1110 0100 0110 1111(2)



The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


3. Normalize the binary representation of the number.

Shift the decimal mark 29 positions to the left, so that only one non zero digit remains to the left of it:


865 985 647(10) =


11 0011 1001 1101 1110 0100 0110 1111(2) =


11 0011 1001 1101 1110 0100 0110 1111(2) × 20 =


1.1001 1100 1110 1111 0010 0011 0111 1(2) × 229


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 29


Mantissa (not normalized):
1.1001 1100 1110 1111 0010 0011 0111 1


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


29 + 2(8-1) - 1 =


(29 + 127)(10) =


156(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 156 ÷ 2 = 78 + 0;
  • 78 ÷ 2 = 39 + 0;
  • 39 ÷ 2 = 19 + 1;
  • 19 ÷ 2 = 9 + 1;
  • 9 ÷ 2 = 4 + 1;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


156(10) =


1001 1100(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 100 1110 0111 0111 1001 0001 10 1111 =


100 1110 0111 0111 1001 0001


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1001 1100


Mantissa (23 bits) =
100 1110 0111 0111 1001 0001


The base ten decimal number 865 985 647 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1001 1100 - 100 1110 0111 0111 1001 0001

(32 bits IEEE 754)

Number 865 985 646 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point representation = ?

Number 865 985 648 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point representation = ?

Convert to 32 bit single precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 865 985 647 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:02 UTC (GMT)
Number 269 190 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:02 UTC (GMT)
Number 5 487 002 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:02 UTC (GMT)
Number 8 999 999 970 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:02 UTC (GMT)
Number 11 110 000 957 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:02 UTC (GMT)
Number 1.25 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:02 UTC (GMT)
Number 1 871 159 241 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:02 UTC (GMT)
Number 292 260 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:02 UTC (GMT)
Number 937 497 645 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:02 UTC (GMT)
Number 1 111 110 011 011 010 000 000 000 000 012 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:02 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal