Convert the Number 8 192.003 417 961 to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number. Detailed Explanations

Number 8 192.003 417 961(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (to base 2) the integer part of the number.

Convert to binary the fractional part of the number.


1. First, convert to binary (in base 2) the integer part: 8 192.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 8 192 ÷ 2 = 4 096 + 0;
  • 4 096 ÷ 2 = 2 048 + 0;
  • 2 048 ÷ 2 = 1 024 + 0;
  • 1 024 ÷ 2 = 512 + 0;
  • 512 ÷ 2 = 256 + 0;
  • 256 ÷ 2 = 128 + 0;
  • 128 ÷ 2 = 64 + 0;
  • 64 ÷ 2 = 32 + 0;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


8 192(10) =


10 0000 0000 0000(2)


3. Convert to binary (base 2) the fractional part: 0.003 417 961.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.003 417 961 × 2 = 0 + 0.006 835 922;
  • 2) 0.006 835 922 × 2 = 0 + 0.013 671 844;
  • 3) 0.013 671 844 × 2 = 0 + 0.027 343 688;
  • 4) 0.027 343 688 × 2 = 0 + 0.054 687 376;
  • 5) 0.054 687 376 × 2 = 0 + 0.109 374 752;
  • 6) 0.109 374 752 × 2 = 0 + 0.218 749 504;
  • 7) 0.218 749 504 × 2 = 0 + 0.437 499 008;
  • 8) 0.437 499 008 × 2 = 0 + 0.874 998 016;
  • 9) 0.874 998 016 × 2 = 1 + 0.749 996 032;
  • 10) 0.749 996 032 × 2 = 1 + 0.499 992 064;
  • 11) 0.499 992 064 × 2 = 0 + 0.999 984 128;
  • 12) 0.999 984 128 × 2 = 1 + 0.999 968 256;
  • 13) 0.999 968 256 × 2 = 1 + 0.999 936 512;
  • 14) 0.999 936 512 × 2 = 1 + 0.999 873 024;
  • 15) 0.999 873 024 × 2 = 1 + 0.999 746 048;
  • 16) 0.999 746 048 × 2 = 1 + 0.999 492 096;
  • 17) 0.999 492 096 × 2 = 1 + 0.998 984 192;
  • 18) 0.998 984 192 × 2 = 1 + 0.997 968 384;
  • 19) 0.997 968 384 × 2 = 1 + 0.995 936 768;
  • 20) 0.995 936 768 × 2 = 1 + 0.991 873 536;
  • 21) 0.991 873 536 × 2 = 1 + 0.983 747 072;
  • 22) 0.983 747 072 × 2 = 1 + 0.967 494 144;
  • 23) 0.967 494 144 × 2 = 1 + 0.934 988 288;
  • 24) 0.934 988 288 × 2 = 1 + 0.869 976 576;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.003 417 961(10) =


0.0000 0000 1101 1111 1111 1111(2)


5. Positive number before normalization:

8 192.003 417 961(10) =


10 0000 0000 0000.0000 0000 1101 1111 1111 1111(2)


The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


6. Normalize the binary representation of the number.

Shift the decimal mark 13 positions to the left, so that only one non zero digit remains to the left of it:


8 192.003 417 961(10) =


10 0000 0000 0000.0000 0000 1101 1111 1111 1111(2) =


10 0000 0000 0000.0000 0000 1101 1111 1111 1111(2) × 20 =


1.0000 0000 0000 0000 0000 0110 1111 1111 1111 1(2) × 213


7. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 13


Mantissa (not normalized):
1.0000 0000 0000 0000 0000 0110 1111 1111 1111 1


8. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


13 + 2(8-1) - 1 =


(13 + 127)(10) =


140(10)


9. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 140 ÷ 2 = 70 + 0;
  • 70 ÷ 2 = 35 + 0;
  • 35 ÷ 2 = 17 + 1;
  • 17 ÷ 2 = 8 + 1;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


140(10) =


1000 1100(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 000 0000 0000 0000 0000 0011 01 1111 1111 1111 =


000 0000 0000 0000 0000 0011


12. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1000 1100


Mantissa (23 bits) =
000 0000 0000 0000 0000 0011


The base ten decimal number 8 192.003 417 961 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1000 1100 - 000 0000 0000 0000 0000 0011

(32 bits IEEE 754)

Number 8 192.003 417 96 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point representation = ?

Number 8 192.003 417 962 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point representation = ?

Convert to 32 bit single precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 8 192.003 417 961 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:15 UTC (GMT)
Number 1 703 413 417 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:15 UTC (GMT)
Number 180.57 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:15 UTC (GMT)
Number 248.512 1 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:15 UTC (GMT)
Number 4.914 062 1 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:15 UTC (GMT)
Number 10 000 000 101 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:15 UTC (GMT)
Number 1 500 056 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:15 UTC (GMT)
Number 6.686 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:15 UTC (GMT)
Number 10.435 753 467 4 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:15 UTC (GMT)
Number 870 125 569 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:15 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal