Convert the Number 639 493 665 029 to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number. Detailed Explanations

Number 639 493 665 029(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (base 2) the integer number.


1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 639 493 665 029 ÷ 2 = 319 746 832 514 + 1;
  • 319 746 832 514 ÷ 2 = 159 873 416 257 + 0;
  • 159 873 416 257 ÷ 2 = 79 936 708 128 + 1;
  • 79 936 708 128 ÷ 2 = 39 968 354 064 + 0;
  • 39 968 354 064 ÷ 2 = 19 984 177 032 + 0;
  • 19 984 177 032 ÷ 2 = 9 992 088 516 + 0;
  • 9 992 088 516 ÷ 2 = 4 996 044 258 + 0;
  • 4 996 044 258 ÷ 2 = 2 498 022 129 + 0;
  • 2 498 022 129 ÷ 2 = 1 249 011 064 + 1;
  • 1 249 011 064 ÷ 2 = 624 505 532 + 0;
  • 624 505 532 ÷ 2 = 312 252 766 + 0;
  • 312 252 766 ÷ 2 = 156 126 383 + 0;
  • 156 126 383 ÷ 2 = 78 063 191 + 1;
  • 78 063 191 ÷ 2 = 39 031 595 + 1;
  • 39 031 595 ÷ 2 = 19 515 797 + 1;
  • 19 515 797 ÷ 2 = 9 757 898 + 1;
  • 9 757 898 ÷ 2 = 4 878 949 + 0;
  • 4 878 949 ÷ 2 = 2 439 474 + 1;
  • 2 439 474 ÷ 2 = 1 219 737 + 0;
  • 1 219 737 ÷ 2 = 609 868 + 1;
  • 609 868 ÷ 2 = 304 934 + 0;
  • 304 934 ÷ 2 = 152 467 + 0;
  • 152 467 ÷ 2 = 76 233 + 1;
  • 76 233 ÷ 2 = 38 116 + 1;
  • 38 116 ÷ 2 = 19 058 + 0;
  • 19 058 ÷ 2 = 9 529 + 0;
  • 9 529 ÷ 2 = 4 764 + 1;
  • 4 764 ÷ 2 = 2 382 + 0;
  • 2 382 ÷ 2 = 1 191 + 0;
  • 1 191 ÷ 2 = 595 + 1;
  • 595 ÷ 2 = 297 + 1;
  • 297 ÷ 2 = 148 + 1;
  • 148 ÷ 2 = 74 + 0;
  • 74 ÷ 2 = 37 + 0;
  • 37 ÷ 2 = 18 + 1;
  • 18 ÷ 2 = 9 + 0;
  • 9 ÷ 2 = 4 + 1;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


639 493 665 029(10) =


1001 0100 1110 0100 1100 1010 1111 0001 0000 0101(2)



The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


3. Normalize the binary representation of the number.

Shift the decimal mark 39 positions to the left, so that only one non zero digit remains to the left of it:


639 493 665 029(10) =


1001 0100 1110 0100 1100 1010 1111 0001 0000 0101(2) =


1001 0100 1110 0100 1100 1010 1111 0001 0000 0101(2) × 20 =


1.0010 1001 1100 1001 1001 0101 1110 0010 0000 101(2) × 239


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 39


Mantissa (not normalized):
1.0010 1001 1100 1001 1001 0101 1110 0010 0000 101


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


39 + 2(8-1) - 1 =


(39 + 127)(10) =


166(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 166 ÷ 2 = 83 + 0;
  • 83 ÷ 2 = 41 + 1;
  • 41 ÷ 2 = 20 + 1;
  • 20 ÷ 2 = 10 + 0;
  • 10 ÷ 2 = 5 + 0;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


166(10) =


1010 0110(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 001 0100 1110 0100 1100 1010 1111 0001 0000 0101 =


001 0100 1110 0100 1100 1010


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1010 0110


Mantissa (23 bits) =
001 0100 1110 0100 1100 1010


The base ten decimal number 639 493 665 029 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1010 0110 - 001 0100 1110 0100 1100 1010

(32 bits IEEE 754)

Number 639 493 665 028 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point representation = ?

Number 639 493 665 030 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point representation = ?

Convert to 32 bit single precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 639 493 665 029 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:07 UTC (GMT)
Number 165.395 862 948 928 595 415 054 587 647 318 840 02 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:07 UTC (GMT)
Number 1 120 404 518 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:07 UTC (GMT)
Number -8 520 017 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:07 UTC (GMT)
Number -1 539.73 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:07 UTC (GMT)
Number 41.439 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:07 UTC (GMT)
Number 11.011 009 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:07 UTC (GMT)
Number 147.625 1 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:07 UTC (GMT)
Number -93.559 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:07 UTC (GMT)
Number -21.312 3 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:07 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal