Convert the Number 3 237 347 314 to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number. Detailed Explanations

Number 3 237 347 314(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (base 2) the integer number.


1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 3 237 347 314 ÷ 2 = 1 618 673 657 + 0;
  • 1 618 673 657 ÷ 2 = 809 336 828 + 1;
  • 809 336 828 ÷ 2 = 404 668 414 + 0;
  • 404 668 414 ÷ 2 = 202 334 207 + 0;
  • 202 334 207 ÷ 2 = 101 167 103 + 1;
  • 101 167 103 ÷ 2 = 50 583 551 + 1;
  • 50 583 551 ÷ 2 = 25 291 775 + 1;
  • 25 291 775 ÷ 2 = 12 645 887 + 1;
  • 12 645 887 ÷ 2 = 6 322 943 + 1;
  • 6 322 943 ÷ 2 = 3 161 471 + 1;
  • 3 161 471 ÷ 2 = 1 580 735 + 1;
  • 1 580 735 ÷ 2 = 790 367 + 1;
  • 790 367 ÷ 2 = 395 183 + 1;
  • 395 183 ÷ 2 = 197 591 + 1;
  • 197 591 ÷ 2 = 98 795 + 1;
  • 98 795 ÷ 2 = 49 397 + 1;
  • 49 397 ÷ 2 = 24 698 + 1;
  • 24 698 ÷ 2 = 12 349 + 0;
  • 12 349 ÷ 2 = 6 174 + 1;
  • 6 174 ÷ 2 = 3 087 + 0;
  • 3 087 ÷ 2 = 1 543 + 1;
  • 1 543 ÷ 2 = 771 + 1;
  • 771 ÷ 2 = 385 + 1;
  • 385 ÷ 2 = 192 + 1;
  • 192 ÷ 2 = 96 + 0;
  • 96 ÷ 2 = 48 + 0;
  • 48 ÷ 2 = 24 + 0;
  • 24 ÷ 2 = 12 + 0;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


3 237 347 314(10) =


1100 0000 1111 0101 1111 1111 1111 0010(2)



The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


3. Normalize the binary representation of the number.

Shift the decimal mark 31 positions to the left, so that only one non zero digit remains to the left of it:


3 237 347 314(10) =


1100 0000 1111 0101 1111 1111 1111 0010(2) =


1100 0000 1111 0101 1111 1111 1111 0010(2) × 20 =


1.1000 0001 1110 1011 1111 1111 1110 010(2) × 231


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 31


Mantissa (not normalized):
1.1000 0001 1110 1011 1111 1111 1110 010


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


31 + 2(8-1) - 1 =


(31 + 127)(10) =


158(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 158 ÷ 2 = 79 + 0;
  • 79 ÷ 2 = 39 + 1;
  • 39 ÷ 2 = 19 + 1;
  • 19 ÷ 2 = 9 + 1;
  • 9 ÷ 2 = 4 + 1;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


158(10) =


1001 1110(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 100 0000 1111 0101 1111 1111 1111 0010 =


100 0000 1111 0101 1111 1111


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1001 1110


Mantissa (23 bits) =
100 0000 1111 0101 1111 1111


The base ten decimal number 3 237 347 314 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1001 1110 - 100 0000 1111 0101 1111 1111

(32 bits IEEE 754)

Number 3 237 347 313 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point representation = ?

Number 3 237 347 315 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point representation = ?

Convert to 32 bit single precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 3 237 347 314 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:12 UTC (GMT)
Number 22.007 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:12 UTC (GMT)
Number 294 778 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:12 UTC (GMT)
Number 20.466 666 67 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:12 UTC (GMT)
Number 1.999 999 999 999 3 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:12 UTC (GMT)
Number 1 000 010 000 001 110 000 000 000 000 040 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:12 UTC (GMT)
Number 1 664 716 684 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:12 UTC (GMT)
Number 1 111 100 111 000 000 000 000 066 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:12 UTC (GMT)
Number -450 053 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:12 UTC (GMT)
Number 3 368 488 930 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:12 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal