32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 3 214 934 017 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 3 214 934 017(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 3 214 934 017 ÷ 2 = 1 607 467 008 + 1;
  • 1 607 467 008 ÷ 2 = 803 733 504 + 0;
  • 803 733 504 ÷ 2 = 401 866 752 + 0;
  • 401 866 752 ÷ 2 = 200 933 376 + 0;
  • 200 933 376 ÷ 2 = 100 466 688 + 0;
  • 100 466 688 ÷ 2 = 50 233 344 + 0;
  • 50 233 344 ÷ 2 = 25 116 672 + 0;
  • 25 116 672 ÷ 2 = 12 558 336 + 0;
  • 12 558 336 ÷ 2 = 6 279 168 + 0;
  • 6 279 168 ÷ 2 = 3 139 584 + 0;
  • 3 139 584 ÷ 2 = 1 569 792 + 0;
  • 1 569 792 ÷ 2 = 784 896 + 0;
  • 784 896 ÷ 2 = 392 448 + 0;
  • 392 448 ÷ 2 = 196 224 + 0;
  • 196 224 ÷ 2 = 98 112 + 0;
  • 98 112 ÷ 2 = 49 056 + 0;
  • 49 056 ÷ 2 = 24 528 + 0;
  • 24 528 ÷ 2 = 12 264 + 0;
  • 12 264 ÷ 2 = 6 132 + 0;
  • 6 132 ÷ 2 = 3 066 + 0;
  • 3 066 ÷ 2 = 1 533 + 0;
  • 1 533 ÷ 2 = 766 + 1;
  • 766 ÷ 2 = 383 + 0;
  • 383 ÷ 2 = 191 + 1;
  • 191 ÷ 2 = 95 + 1;
  • 95 ÷ 2 = 47 + 1;
  • 47 ÷ 2 = 23 + 1;
  • 23 ÷ 2 = 11 + 1;
  • 11 ÷ 2 = 5 + 1;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


3 214 934 017(10) =


1011 1111 1010 0000 0000 0000 0000 0001(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 31 positions to the left, so that only one non zero digit remains to the left of it:


3 214 934 017(10) =


1011 1111 1010 0000 0000 0000 0000 0001(2) =


1011 1111 1010 0000 0000 0000 0000 0001(2) × 20 =


1.0111 1111 0100 0000 0000 0000 0000 001(2) × 231


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 31


Mantissa (not normalized):
1.0111 1111 0100 0000 0000 0000 0000 001


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


31 + 2(8-1) - 1 =


(31 + 127)(10) =


158(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 158 ÷ 2 = 79 + 0;
  • 79 ÷ 2 = 39 + 1;
  • 39 ÷ 2 = 19 + 1;
  • 19 ÷ 2 = 9 + 1;
  • 9 ÷ 2 = 4 + 1;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


158(10) =


1001 1110(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 011 1111 1010 0000 0000 0000 0000 0001 =


011 1111 1010 0000 0000 0000


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1001 1110


Mantissa (23 bits) =
011 1111 1010 0000 0000 0000


The base ten decimal number 3 214 934 017 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1001 1110 - 011 1111 1010 0000 0000 0000

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number -7 548 975 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Jul 13 12:39 UTC (GMT)
Number 15.857 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Jul 13 12:39 UTC (GMT)
Number 1 000 100 001 010 110 000 000 000 000 136 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Jul 13 12:39 UTC (GMT)
Number 23.445 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Jul 13 12:39 UTC (GMT)
Number 9 999.99 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Jul 13 12:39 UTC (GMT)
Number -5.097 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Jul 13 12:39 UTC (GMT)
Number 11 000 010 101 001 010 101 101 100 100 064 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Jul 13 12:39 UTC (GMT)
Number -8.004 4 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Jul 13 12:39 UTC (GMT)
Number -3.889 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Jul 13 12:39 UTC (GMT)
Number 777 295 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Jul 13 12:39 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111