Convert the Number 30 999 999 999 989 to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number. Detailed Explanations

Number 30 999 999 999 989(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (base 2) the integer number.


1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 30 999 999 999 989 ÷ 2 = 15 499 999 999 994 + 1;
  • 15 499 999 999 994 ÷ 2 = 7 749 999 999 997 + 0;
  • 7 749 999 999 997 ÷ 2 = 3 874 999 999 998 + 1;
  • 3 874 999 999 998 ÷ 2 = 1 937 499 999 999 + 0;
  • 1 937 499 999 999 ÷ 2 = 968 749 999 999 + 1;
  • 968 749 999 999 ÷ 2 = 484 374 999 999 + 1;
  • 484 374 999 999 ÷ 2 = 242 187 499 999 + 1;
  • 242 187 499 999 ÷ 2 = 121 093 749 999 + 1;
  • 121 093 749 999 ÷ 2 = 60 546 874 999 + 1;
  • 60 546 874 999 ÷ 2 = 30 273 437 499 + 1;
  • 30 273 437 499 ÷ 2 = 15 136 718 749 + 1;
  • 15 136 718 749 ÷ 2 = 7 568 359 374 + 1;
  • 7 568 359 374 ÷ 2 = 3 784 179 687 + 0;
  • 3 784 179 687 ÷ 2 = 1 892 089 843 + 1;
  • 1 892 089 843 ÷ 2 = 946 044 921 + 1;
  • 946 044 921 ÷ 2 = 473 022 460 + 1;
  • 473 022 460 ÷ 2 = 236 511 230 + 0;
  • 236 511 230 ÷ 2 = 118 255 615 + 0;
  • 118 255 615 ÷ 2 = 59 127 807 + 1;
  • 59 127 807 ÷ 2 = 29 563 903 + 1;
  • 29 563 903 ÷ 2 = 14 781 951 + 1;
  • 14 781 951 ÷ 2 = 7 390 975 + 1;
  • 7 390 975 ÷ 2 = 3 695 487 + 1;
  • 3 695 487 ÷ 2 = 1 847 743 + 1;
  • 1 847 743 ÷ 2 = 923 871 + 1;
  • 923 871 ÷ 2 = 461 935 + 1;
  • 461 935 ÷ 2 = 230 967 + 1;
  • 230 967 ÷ 2 = 115 483 + 1;
  • 115 483 ÷ 2 = 57 741 + 1;
  • 57 741 ÷ 2 = 28 870 + 1;
  • 28 870 ÷ 2 = 14 435 + 0;
  • 14 435 ÷ 2 = 7 217 + 1;
  • 7 217 ÷ 2 = 3 608 + 1;
  • 3 608 ÷ 2 = 1 804 + 0;
  • 1 804 ÷ 2 = 902 + 0;
  • 902 ÷ 2 = 451 + 0;
  • 451 ÷ 2 = 225 + 1;
  • 225 ÷ 2 = 112 + 1;
  • 112 ÷ 2 = 56 + 0;
  • 56 ÷ 2 = 28 + 0;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


30 999 999 999 989(10) =


1 1100 0011 0001 1011 1111 1111 1100 1110 1111 1111 0101(2)



The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


3. Normalize the binary representation of the number.

Shift the decimal mark 44 positions to the left, so that only one non zero digit remains to the left of it:


30 999 999 999 989(10) =


1 1100 0011 0001 1011 1111 1111 1100 1110 1111 1111 0101(2) =


1 1100 0011 0001 1011 1111 1111 1100 1110 1111 1111 0101(2) × 20 =


1.1100 0011 0001 1011 1111 1111 1100 1110 1111 1111 0101(2) × 244


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 44


Mantissa (not normalized):
1.1100 0011 0001 1011 1111 1111 1100 1110 1111 1111 0101


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


44 + 2(8-1) - 1 =


(44 + 127)(10) =


171(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 171 ÷ 2 = 85 + 1;
  • 85 ÷ 2 = 42 + 1;
  • 42 ÷ 2 = 21 + 0;
  • 21 ÷ 2 = 10 + 1;
  • 10 ÷ 2 = 5 + 0;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


171(10) =


1010 1011(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 110 0001 1000 1101 1111 1111 1 1100 1110 1111 1111 0101 =


110 0001 1000 1101 1111 1111


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1010 1011


Mantissa (23 bits) =
110 0001 1000 1101 1111 1111


The base ten decimal number 30 999 999 999 989 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1010 1011 - 110 0001 1000 1101 1111 1111

(32 bits IEEE 754)

Number 30 999 999 999 988 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point representation = ?

Number 30 999 999 999 990 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point representation = ?

Convert to 32 bit single precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 30 999 999 999 989 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:14 UTC (GMT)
Number 50.665 283 28 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:14 UTC (GMT)
Number 2 247 426 071 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:14 UTC (GMT)
Number 27 259 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:14 UTC (GMT)
Number -15 647 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:14 UTC (GMT)
Number -0.045 623 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:14 UTC (GMT)
Number 7 313 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:14 UTC (GMT)
Number -1 512.213 535 3 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:14 UTC (GMT)
Number 14 053 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:14 UTC (GMT)
Number 26 991.838 623 046 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:14 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal