Convert the Number 2 532.129 82 to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number. Detailed Explanations

Number 2 532.129 82(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (to base 2) the integer part of the number.

Convert to binary the fractional part of the number.


1. First, convert to binary (in base 2) the integer part: 2 532.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 2 532 ÷ 2 = 1 266 + 0;
  • 1 266 ÷ 2 = 633 + 0;
  • 633 ÷ 2 = 316 + 1;
  • 316 ÷ 2 = 158 + 0;
  • 158 ÷ 2 = 79 + 0;
  • 79 ÷ 2 = 39 + 1;
  • 39 ÷ 2 = 19 + 1;
  • 19 ÷ 2 = 9 + 1;
  • 9 ÷ 2 = 4 + 1;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


2 532(10) =


1001 1110 0100(2)


3. Convert to binary (base 2) the fractional part: 0.129 82.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.129 82 × 2 = 0 + 0.259 64;
  • 2) 0.259 64 × 2 = 0 + 0.519 28;
  • 3) 0.519 28 × 2 = 1 + 0.038 56;
  • 4) 0.038 56 × 2 = 0 + 0.077 12;
  • 5) 0.077 12 × 2 = 0 + 0.154 24;
  • 6) 0.154 24 × 2 = 0 + 0.308 48;
  • 7) 0.308 48 × 2 = 0 + 0.616 96;
  • 8) 0.616 96 × 2 = 1 + 0.233 92;
  • 9) 0.233 92 × 2 = 0 + 0.467 84;
  • 10) 0.467 84 × 2 = 0 + 0.935 68;
  • 11) 0.935 68 × 2 = 1 + 0.871 36;
  • 12) 0.871 36 × 2 = 1 + 0.742 72;
  • 13) 0.742 72 × 2 = 1 + 0.485 44;
  • 14) 0.485 44 × 2 = 0 + 0.970 88;
  • 15) 0.970 88 × 2 = 1 + 0.941 76;
  • 16) 0.941 76 × 2 = 1 + 0.883 52;
  • 17) 0.883 52 × 2 = 1 + 0.767 04;
  • 18) 0.767 04 × 2 = 1 + 0.534 08;
  • 19) 0.534 08 × 2 = 1 + 0.068 16;
  • 20) 0.068 16 × 2 = 0 + 0.136 32;
  • 21) 0.136 32 × 2 = 0 + 0.272 64;
  • 22) 0.272 64 × 2 = 0 + 0.545 28;
  • 23) 0.545 28 × 2 = 1 + 0.090 56;
  • 24) 0.090 56 × 2 = 0 + 0.181 12;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.129 82(10) =


0.0010 0001 0011 1011 1110 0010(2)


5. Positive number before normalization:

2 532.129 82(10) =


1001 1110 0100.0010 0001 0011 1011 1110 0010(2)


The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


6. Normalize the binary representation of the number.

Shift the decimal mark 11 positions to the left, so that only one non zero digit remains to the left of it:


2 532.129 82(10) =


1001 1110 0100.0010 0001 0011 1011 1110 0010(2) =


1001 1110 0100.0010 0001 0011 1011 1110 0010(2) × 20 =


1.0011 1100 1000 0100 0010 0111 0111 1100 010(2) × 211


7. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 11


Mantissa (not normalized):
1.0011 1100 1000 0100 0010 0111 0111 1100 010


8. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


11 + 2(8-1) - 1 =


(11 + 127)(10) =


138(10)


9. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 138 ÷ 2 = 69 + 0;
  • 69 ÷ 2 = 34 + 1;
  • 34 ÷ 2 = 17 + 0;
  • 17 ÷ 2 = 8 + 1;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


138(10) =


1000 1010(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 001 1110 0100 0010 0001 0011 1011 1110 0010 =


001 1110 0100 0010 0001 0011


12. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1000 1010


Mantissa (23 bits) =
001 1110 0100 0010 0001 0011


The base ten decimal number 2 532.129 82 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1000 1010 - 001 1110 0100 0010 0001 0011

(32 bits IEEE 754)

Number 2 532.129 81 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point representation = ?

Number 2 532.129 83 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point representation = ?

Convert to 32 bit single precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 2 532.129 82 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:03 UTC (GMT)
Number 100 010 010 111 101 011 000 989 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:03 UTC (GMT)
Number 192 268 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:03 UTC (GMT)
Number 340 201 000 499 999 999 999 999 999 999 999 999 985 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:03 UTC (GMT)
Number 9 500 981 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:03 UTC (GMT)
Number 10 000 001 110 010 999 999 999 999 999 974 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:03 UTC (GMT)
Number 558 999 982 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:03 UTC (GMT)
Number 1 000 011 110 009 999 999 999 999 999 977 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:03 UTC (GMT)
Number 2 031 504 771 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:03 UTC (GMT)
Number 6.593 79 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:03 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal