Convert the Number 2.098 512 057 467 to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number. Detailed Explanations

Number 2.098 512 057 467(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (to base 2) the integer part of the number.

Convert to binary the fractional part of the number.


1. First, convert to binary (in base 2) the integer part: 2.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


2(10) =


10(2)


3. Convert to binary (base 2) the fractional part: 0.098 512 057 467.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.098 512 057 467 × 2 = 0 + 0.197 024 114 934;
  • 2) 0.197 024 114 934 × 2 = 0 + 0.394 048 229 868;
  • 3) 0.394 048 229 868 × 2 = 0 + 0.788 096 459 736;
  • 4) 0.788 096 459 736 × 2 = 1 + 0.576 192 919 472;
  • 5) 0.576 192 919 472 × 2 = 1 + 0.152 385 838 944;
  • 6) 0.152 385 838 944 × 2 = 0 + 0.304 771 677 888;
  • 7) 0.304 771 677 888 × 2 = 0 + 0.609 543 355 776;
  • 8) 0.609 543 355 776 × 2 = 1 + 0.219 086 711 552;
  • 9) 0.219 086 711 552 × 2 = 0 + 0.438 173 423 104;
  • 10) 0.438 173 423 104 × 2 = 0 + 0.876 346 846 208;
  • 11) 0.876 346 846 208 × 2 = 1 + 0.752 693 692 416;
  • 12) 0.752 693 692 416 × 2 = 1 + 0.505 387 384 832;
  • 13) 0.505 387 384 832 × 2 = 1 + 0.010 774 769 664;
  • 14) 0.010 774 769 664 × 2 = 0 + 0.021 549 539 328;
  • 15) 0.021 549 539 328 × 2 = 0 + 0.043 099 078 656;
  • 16) 0.043 099 078 656 × 2 = 0 + 0.086 198 157 312;
  • 17) 0.086 198 157 312 × 2 = 0 + 0.172 396 314 624;
  • 18) 0.172 396 314 624 × 2 = 0 + 0.344 792 629 248;
  • 19) 0.344 792 629 248 × 2 = 0 + 0.689 585 258 496;
  • 20) 0.689 585 258 496 × 2 = 1 + 0.379 170 516 992;
  • 21) 0.379 170 516 992 × 2 = 0 + 0.758 341 033 984;
  • 22) 0.758 341 033 984 × 2 = 1 + 0.516 682 067 968;
  • 23) 0.516 682 067 968 × 2 = 1 + 0.033 364 135 936;
  • 24) 0.033 364 135 936 × 2 = 0 + 0.066 728 271 872;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.098 512 057 467(10) =


0.0001 1001 0011 1000 0001 0110(2)


5. Positive number before normalization:

2.098 512 057 467(10) =


10.0001 1001 0011 1000 0001 0110(2)


The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


6. Normalize the binary representation of the number.

Shift the decimal mark 1 positions to the left, so that only one non zero digit remains to the left of it:


2.098 512 057 467(10) =


10.0001 1001 0011 1000 0001 0110(2) =


10.0001 1001 0011 1000 0001 0110(2) × 20 =


1.0000 1100 1001 1100 0000 1011 0(2) × 21


7. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 1


Mantissa (not normalized):
1.0000 1100 1001 1100 0000 1011 0


8. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


1 + 2(8-1) - 1 =


(1 + 127)(10) =


128(10)


9. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 128 ÷ 2 = 64 + 0;
  • 64 ÷ 2 = 32 + 0;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


128(10) =


1000 0000(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 000 0110 0100 1110 0000 0101 10 =


000 0110 0100 1110 0000 0101


12. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1000 0000


Mantissa (23 bits) =
000 0110 0100 1110 0000 0101


The base ten decimal number 2.098 512 057 467 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1000 0000 - 000 0110 0100 1110 0000 0101

(32 bits IEEE 754)

Number 2.098 512 057 466 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point representation = ?

Number 2.098 512 057 468 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point representation = ?

Convert to 32 bit single precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 2.098 512 057 467 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:58 UTC (GMT)
Number 3 405 644 036 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:58 UTC (GMT)
Number -4 326.57 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:58 UTC (GMT)
Number -397.16 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:58 UTC (GMT)
Number 1 000 010 110 100 110 100 000 000 000 038 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:58 UTC (GMT)
Number 1 000 010 011 010 111 100 000 000 000 017 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:58 UTC (GMT)
Number -141 444 320 894 911 613 440 622 529 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:58 UTC (GMT)
Number 10 000 111 110 109 999 999 999 999 999 989 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:58 UTC (GMT)
Number 2.718 44 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:58 UTC (GMT)
Number 56 862 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:58 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal