Convert the Number 16 014 072 to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number. Detailed Explanations

Number 16 014 072(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (base 2) the integer number.


1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 16 014 072 ÷ 2 = 8 007 036 + 0;
  • 8 007 036 ÷ 2 = 4 003 518 + 0;
  • 4 003 518 ÷ 2 = 2 001 759 + 0;
  • 2 001 759 ÷ 2 = 1 000 879 + 1;
  • 1 000 879 ÷ 2 = 500 439 + 1;
  • 500 439 ÷ 2 = 250 219 + 1;
  • 250 219 ÷ 2 = 125 109 + 1;
  • 125 109 ÷ 2 = 62 554 + 1;
  • 62 554 ÷ 2 = 31 277 + 0;
  • 31 277 ÷ 2 = 15 638 + 1;
  • 15 638 ÷ 2 = 7 819 + 0;
  • 7 819 ÷ 2 = 3 909 + 1;
  • 3 909 ÷ 2 = 1 954 + 1;
  • 1 954 ÷ 2 = 977 + 0;
  • 977 ÷ 2 = 488 + 1;
  • 488 ÷ 2 = 244 + 0;
  • 244 ÷ 2 = 122 + 0;
  • 122 ÷ 2 = 61 + 0;
  • 61 ÷ 2 = 30 + 1;
  • 30 ÷ 2 = 15 + 0;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


16 014 072(10) =


1111 0100 0101 1010 1111 1000(2)



The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


3. Normalize the binary representation of the number.

Shift the decimal mark 23 positions to the left, so that only one non zero digit remains to the left of it:


16 014 072(10) =


1111 0100 0101 1010 1111 1000(2) =


1111 0100 0101 1010 1111 1000(2) × 20 =


1.1110 1000 1011 0101 1111 000(2) × 223


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 23


Mantissa (not normalized):
1.1110 1000 1011 0101 1111 000


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


23 + 2(8-1) - 1 =


(23 + 127)(10) =


150(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 150 ÷ 2 = 75 + 0;
  • 75 ÷ 2 = 37 + 1;
  • 37 ÷ 2 = 18 + 1;
  • 18 ÷ 2 = 9 + 0;
  • 9 ÷ 2 = 4 + 1;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


150(10) =


1001 0110(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, only if necessary (not the case here).


Mantissa (normalized) =


1. 111 0100 0101 1010 1111 1000 =


111 0100 0101 1010 1111 1000


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1001 0110


Mantissa (23 bits) =
111 0100 0101 1010 1111 1000


The base ten decimal number 16 014 072 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1001 0110 - 111 0100 0101 1010 1111 1000

(32 bits IEEE 754)

Number 16 014 071 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point representation = ?

Number 16 014 073 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point representation = ?

Convert to 32 bit single precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 16 014 072 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:15 UTC (GMT)
Number 10 000 949 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:15 UTC (GMT)
Number 100 011 111 000 101 007 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:15 UTC (GMT)
Number 11 111 001 101 100 999 999 999 999 960 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:15 UTC (GMT)
Number 3 024.7 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:15 UTC (GMT)
Number 975 983 785 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:15 UTC (GMT)
Number -435.121 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:15 UTC (GMT)
Number 340 138 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:15 UTC (GMT)
Number 1 952.000 29 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:15 UTC (GMT)
Number 101 011 010 101 037 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:15 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal