Convert the Number 1 137 176 603 to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number. Detailed Explanations

Number 1 137 176 603(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (base 2) the integer number.


1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 1 137 176 603 ÷ 2 = 568 588 301 + 1;
  • 568 588 301 ÷ 2 = 284 294 150 + 1;
  • 284 294 150 ÷ 2 = 142 147 075 + 0;
  • 142 147 075 ÷ 2 = 71 073 537 + 1;
  • 71 073 537 ÷ 2 = 35 536 768 + 1;
  • 35 536 768 ÷ 2 = 17 768 384 + 0;
  • 17 768 384 ÷ 2 = 8 884 192 + 0;
  • 8 884 192 ÷ 2 = 4 442 096 + 0;
  • 4 442 096 ÷ 2 = 2 221 048 + 0;
  • 2 221 048 ÷ 2 = 1 110 524 + 0;
  • 1 110 524 ÷ 2 = 555 262 + 0;
  • 555 262 ÷ 2 = 277 631 + 0;
  • 277 631 ÷ 2 = 138 815 + 1;
  • 138 815 ÷ 2 = 69 407 + 1;
  • 69 407 ÷ 2 = 34 703 + 1;
  • 34 703 ÷ 2 = 17 351 + 1;
  • 17 351 ÷ 2 = 8 675 + 1;
  • 8 675 ÷ 2 = 4 337 + 1;
  • 4 337 ÷ 2 = 2 168 + 1;
  • 2 168 ÷ 2 = 1 084 + 0;
  • 1 084 ÷ 2 = 542 + 0;
  • 542 ÷ 2 = 271 + 0;
  • 271 ÷ 2 = 135 + 1;
  • 135 ÷ 2 = 67 + 1;
  • 67 ÷ 2 = 33 + 1;
  • 33 ÷ 2 = 16 + 1;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


1 137 176 603(10) =


100 0011 1100 0111 1111 0000 0001 1011(2)



The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


3. Normalize the binary representation of the number.

Shift the decimal mark 30 positions to the left, so that only one non zero digit remains to the left of it:


1 137 176 603(10) =


100 0011 1100 0111 1111 0000 0001 1011(2) =


100 0011 1100 0111 1111 0000 0001 1011(2) × 20 =


1.0000 1111 0001 1111 1100 0000 0110 11(2) × 230


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 30


Mantissa (not normalized):
1.0000 1111 0001 1111 1100 0000 0110 11


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


30 + 2(8-1) - 1 =


(30 + 127)(10) =


157(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 157 ÷ 2 = 78 + 1;
  • 78 ÷ 2 = 39 + 0;
  • 39 ÷ 2 = 19 + 1;
  • 19 ÷ 2 = 9 + 1;
  • 9 ÷ 2 = 4 + 1;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


157(10) =


1001 1101(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 000 0111 1000 1111 1110 0000 001 1011 =


000 0111 1000 1111 1110 0000


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1001 1101


Mantissa (23 bits) =
000 0111 1000 1111 1110 0000


The base ten decimal number 1 137 176 603 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1001 1101 - 000 0111 1000 1111 1110 0000

(32 bits IEEE 754)

Number 1 137 176 602 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point representation = ?

Number 1 137 176 604 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point representation = ?

Convert to 32 bit single precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 1 137 176 603 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:11 UTC (GMT)
Number 3 995.8 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:11 UTC (GMT)
Number 6 371 336 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:11 UTC (GMT)
Number 3 300 605 924 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:11 UTC (GMT)
Number 567 387 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:11 UTC (GMT)
Number 14 499 863 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:11 UTC (GMT)
Number 518.72 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:11 UTC (GMT)
Number 1 011 110 000 999 999 999 999 999 999 934 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:11 UTC (GMT)
Number 1.793 662 034 335 9 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:11 UTC (GMT)
Number 10 100 977 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:11 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal