Decimal to 32 Bit IEEE 754 Binary: Convert Number 11 111 110 100 001 100 000 000 000 003 to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From Base Ten Decimal System

Number 11 111 110 100 001 100 000 000 000 003(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation standard (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 11 111 110 100 001 100 000 000 000 003 ÷ 2 = 5 555 555 050 000 550 000 000 000 001 + 1;
  • 5 555 555 050 000 550 000 000 000 001 ÷ 2 = 2 777 777 525 000 275 000 000 000 000 + 1;
  • 2 777 777 525 000 275 000 000 000 000 ÷ 2 = 1 388 888 762 500 137 500 000 000 000 + 0;
  • 1 388 888 762 500 137 500 000 000 000 ÷ 2 = 694 444 381 250 068 750 000 000 000 + 0;
  • 694 444 381 250 068 750 000 000 000 ÷ 2 = 347 222 190 625 034 375 000 000 000 + 0;
  • 347 222 190 625 034 375 000 000 000 ÷ 2 = 173 611 095 312 517 187 500 000 000 + 0;
  • 173 611 095 312 517 187 500 000 000 ÷ 2 = 86 805 547 656 258 593 750 000 000 + 0;
  • 86 805 547 656 258 593 750 000 000 ÷ 2 = 43 402 773 828 129 296 875 000 000 + 0;
  • 43 402 773 828 129 296 875 000 000 ÷ 2 = 21 701 386 914 064 648 437 500 000 + 0;
  • 21 701 386 914 064 648 437 500 000 ÷ 2 = 10 850 693 457 032 324 218 750 000 + 0;
  • 10 850 693 457 032 324 218 750 000 ÷ 2 = 5 425 346 728 516 162 109 375 000 + 0;
  • 5 425 346 728 516 162 109 375 000 ÷ 2 = 2 712 673 364 258 081 054 687 500 + 0;
  • 2 712 673 364 258 081 054 687 500 ÷ 2 = 1 356 336 682 129 040 527 343 750 + 0;
  • 1 356 336 682 129 040 527 343 750 ÷ 2 = 678 168 341 064 520 263 671 875 + 0;
  • 678 168 341 064 520 263 671 875 ÷ 2 = 339 084 170 532 260 131 835 937 + 1;
  • 339 084 170 532 260 131 835 937 ÷ 2 = 169 542 085 266 130 065 917 968 + 1;
  • 169 542 085 266 130 065 917 968 ÷ 2 = 84 771 042 633 065 032 958 984 + 0;
  • 84 771 042 633 065 032 958 984 ÷ 2 = 42 385 521 316 532 516 479 492 + 0;
  • 42 385 521 316 532 516 479 492 ÷ 2 = 21 192 760 658 266 258 239 746 + 0;
  • 21 192 760 658 266 258 239 746 ÷ 2 = 10 596 380 329 133 129 119 873 + 0;
  • 10 596 380 329 133 129 119 873 ÷ 2 = 5 298 190 164 566 564 559 936 + 1;
  • 5 298 190 164 566 564 559 936 ÷ 2 = 2 649 095 082 283 282 279 968 + 0;
  • 2 649 095 082 283 282 279 968 ÷ 2 = 1 324 547 541 141 641 139 984 + 0;
  • 1 324 547 541 141 641 139 984 ÷ 2 = 662 273 770 570 820 569 992 + 0;
  • 662 273 770 570 820 569 992 ÷ 2 = 331 136 885 285 410 284 996 + 0;
  • 331 136 885 285 410 284 996 ÷ 2 = 165 568 442 642 705 142 498 + 0;
  • 165 568 442 642 705 142 498 ÷ 2 = 82 784 221 321 352 571 249 + 0;
  • 82 784 221 321 352 571 249 ÷ 2 = 41 392 110 660 676 285 624 + 1;
  • 41 392 110 660 676 285 624 ÷ 2 = 20 696 055 330 338 142 812 + 0;
  • 20 696 055 330 338 142 812 ÷ 2 = 10 348 027 665 169 071 406 + 0;
  • 10 348 027 665 169 071 406 ÷ 2 = 5 174 013 832 584 535 703 + 0;
  • 5 174 013 832 584 535 703 ÷ 2 = 2 587 006 916 292 267 851 + 1;
  • 2 587 006 916 292 267 851 ÷ 2 = 1 293 503 458 146 133 925 + 1;
  • 1 293 503 458 146 133 925 ÷ 2 = 646 751 729 073 066 962 + 1;
  • 646 751 729 073 066 962 ÷ 2 = 323 375 864 536 533 481 + 0;
  • 323 375 864 536 533 481 ÷ 2 = 161 687 932 268 266 740 + 1;
  • 161 687 932 268 266 740 ÷ 2 = 80 843 966 134 133 370 + 0;
  • 80 843 966 134 133 370 ÷ 2 = 40 421 983 067 066 685 + 0;
  • 40 421 983 067 066 685 ÷ 2 = 20 210 991 533 533 342 + 1;
  • 20 210 991 533 533 342 ÷ 2 = 10 105 495 766 766 671 + 0;
  • 10 105 495 766 766 671 ÷ 2 = 5 052 747 883 383 335 + 1;
  • 5 052 747 883 383 335 ÷ 2 = 2 526 373 941 691 667 + 1;
  • 2 526 373 941 691 667 ÷ 2 = 1 263 186 970 845 833 + 1;
  • 1 263 186 970 845 833 ÷ 2 = 631 593 485 422 916 + 1;
  • 631 593 485 422 916 ÷ 2 = 315 796 742 711 458 + 0;
  • 315 796 742 711 458 ÷ 2 = 157 898 371 355 729 + 0;
  • 157 898 371 355 729 ÷ 2 = 78 949 185 677 864 + 1;
  • 78 949 185 677 864 ÷ 2 = 39 474 592 838 932 + 0;
  • 39 474 592 838 932 ÷ 2 = 19 737 296 419 466 + 0;
  • 19 737 296 419 466 ÷ 2 = 9 868 648 209 733 + 0;
  • 9 868 648 209 733 ÷ 2 = 4 934 324 104 866 + 1;
  • 4 934 324 104 866 ÷ 2 = 2 467 162 052 433 + 0;
  • 2 467 162 052 433 ÷ 2 = 1 233 581 026 216 + 1;
  • 1 233 581 026 216 ÷ 2 = 616 790 513 108 + 0;
  • 616 790 513 108 ÷ 2 = 308 395 256 554 + 0;
  • 308 395 256 554 ÷ 2 = 154 197 628 277 + 0;
  • 154 197 628 277 ÷ 2 = 77 098 814 138 + 1;
  • 77 098 814 138 ÷ 2 = 38 549 407 069 + 0;
  • 38 549 407 069 ÷ 2 = 19 274 703 534 + 1;
  • 19 274 703 534 ÷ 2 = 9 637 351 767 + 0;
  • 9 637 351 767 ÷ 2 = 4 818 675 883 + 1;
  • 4 818 675 883 ÷ 2 = 2 409 337 941 + 1;
  • 2 409 337 941 ÷ 2 = 1 204 668 970 + 1;
  • 1 204 668 970 ÷ 2 = 602 334 485 + 0;
  • 602 334 485 ÷ 2 = 301 167 242 + 1;
  • 301 167 242 ÷ 2 = 150 583 621 + 0;
  • 150 583 621 ÷ 2 = 75 291 810 + 1;
  • 75 291 810 ÷ 2 = 37 645 905 + 0;
  • 37 645 905 ÷ 2 = 18 822 952 + 1;
  • 18 822 952 ÷ 2 = 9 411 476 + 0;
  • 9 411 476 ÷ 2 = 4 705 738 + 0;
  • 4 705 738 ÷ 2 = 2 352 869 + 0;
  • 2 352 869 ÷ 2 = 1 176 434 + 1;
  • 1 176 434 ÷ 2 = 588 217 + 0;
  • 588 217 ÷ 2 = 294 108 + 1;
  • 294 108 ÷ 2 = 147 054 + 0;
  • 147 054 ÷ 2 = 73 527 + 0;
  • 73 527 ÷ 2 = 36 763 + 1;
  • 36 763 ÷ 2 = 18 381 + 1;
  • 18 381 ÷ 2 = 9 190 + 1;
  • 9 190 ÷ 2 = 4 595 + 0;
  • 4 595 ÷ 2 = 2 297 + 1;
  • 2 297 ÷ 2 = 1 148 + 1;
  • 1 148 ÷ 2 = 574 + 0;
  • 574 ÷ 2 = 287 + 0;
  • 287 ÷ 2 = 143 + 1;
  • 143 ÷ 2 = 71 + 1;
  • 71 ÷ 2 = 35 + 1;
  • 35 ÷ 2 = 17 + 1;
  • 17 ÷ 2 = 8 + 1;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.

11 111 110 100 001 100 000 000 000 003(10) =


10 0011 1110 0110 1110 0101 0001 0101 0111 0101 0001 0100 0100 1111 0100 1011 1000 1000 0001 0000 1100 0000 0000 0011(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 93 positions to the left, so that only one non zero digit remains to the left of it:


11 111 110 100 001 100 000 000 000 003(10) =


10 0011 1110 0110 1110 0101 0001 0101 0111 0101 0001 0100 0100 1111 0100 1011 1000 1000 0001 0000 1100 0000 0000 0011(2) =


10 0011 1110 0110 1110 0101 0001 0101 0111 0101 0001 0100 0100 1111 0100 1011 1000 1000 0001 0000 1100 0000 0000 0011(2) × 20 =


1.0001 1111 0011 0111 0010 1000 1010 1011 1010 1000 1010 0010 0111 1010 0101 1100 0100 0000 1000 0110 0000 0000 0001 1(2) × 293


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 93


Mantissa (not normalized):
1.0001 1111 0011 0111 0010 1000 1010 1011 1010 1000 1010 0010 0111 1010 0101 1100 0100 0000 1000 0110 0000 0000 0001 1


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


93 + 2(8-1) - 1 =


(93 + 127)(10) =


220(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 220 ÷ 2 = 110 + 0;
  • 110 ÷ 2 = 55 + 0;
  • 55 ÷ 2 = 27 + 1;
  • 27 ÷ 2 = 13 + 1;
  • 13 ÷ 2 = 6 + 1;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


220(10) =


1101 1100(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 000 1111 1001 1011 1001 0100 01 0101 0111 0101 0001 0100 0100 1111 0100 1011 1000 1000 0001 0000 1100 0000 0000 0011 =


000 1111 1001 1011 1001 0100


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1101 1100


Mantissa (23 bits) =
000 1111 1001 1011 1001 0100


The base ten decimal number 11 111 110 100 001 100 000 000 000 003 converted and written in 32 bit single precision IEEE 754 binary floating point representation:

0 - 1101 1100 - 000 1111 1001 1011 1001 0100

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111