32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 11 000 010 101 110 110 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 11 000 010 101 110 110(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 11 000 010 101 110 110 ÷ 2 = 5 500 005 050 555 055 + 0;
  • 5 500 005 050 555 055 ÷ 2 = 2 750 002 525 277 527 + 1;
  • 2 750 002 525 277 527 ÷ 2 = 1 375 001 262 638 763 + 1;
  • 1 375 001 262 638 763 ÷ 2 = 687 500 631 319 381 + 1;
  • 687 500 631 319 381 ÷ 2 = 343 750 315 659 690 + 1;
  • 343 750 315 659 690 ÷ 2 = 171 875 157 829 845 + 0;
  • 171 875 157 829 845 ÷ 2 = 85 937 578 914 922 + 1;
  • 85 937 578 914 922 ÷ 2 = 42 968 789 457 461 + 0;
  • 42 968 789 457 461 ÷ 2 = 21 484 394 728 730 + 1;
  • 21 484 394 728 730 ÷ 2 = 10 742 197 364 365 + 0;
  • 10 742 197 364 365 ÷ 2 = 5 371 098 682 182 + 1;
  • 5 371 098 682 182 ÷ 2 = 2 685 549 341 091 + 0;
  • 2 685 549 341 091 ÷ 2 = 1 342 774 670 545 + 1;
  • 1 342 774 670 545 ÷ 2 = 671 387 335 272 + 1;
  • 671 387 335 272 ÷ 2 = 335 693 667 636 + 0;
  • 335 693 667 636 ÷ 2 = 167 846 833 818 + 0;
  • 167 846 833 818 ÷ 2 = 83 923 416 909 + 0;
  • 83 923 416 909 ÷ 2 = 41 961 708 454 + 1;
  • 41 961 708 454 ÷ 2 = 20 980 854 227 + 0;
  • 20 980 854 227 ÷ 2 = 10 490 427 113 + 1;
  • 10 490 427 113 ÷ 2 = 5 245 213 556 + 1;
  • 5 245 213 556 ÷ 2 = 2 622 606 778 + 0;
  • 2 622 606 778 ÷ 2 = 1 311 303 389 + 0;
  • 1 311 303 389 ÷ 2 = 655 651 694 + 1;
  • 655 651 694 ÷ 2 = 327 825 847 + 0;
  • 327 825 847 ÷ 2 = 163 912 923 + 1;
  • 163 912 923 ÷ 2 = 81 956 461 + 1;
  • 81 956 461 ÷ 2 = 40 978 230 + 1;
  • 40 978 230 ÷ 2 = 20 489 115 + 0;
  • 20 489 115 ÷ 2 = 10 244 557 + 1;
  • 10 244 557 ÷ 2 = 5 122 278 + 1;
  • 5 122 278 ÷ 2 = 2 561 139 + 0;
  • 2 561 139 ÷ 2 = 1 280 569 + 1;
  • 1 280 569 ÷ 2 = 640 284 + 1;
  • 640 284 ÷ 2 = 320 142 + 0;
  • 320 142 ÷ 2 = 160 071 + 0;
  • 160 071 ÷ 2 = 80 035 + 1;
  • 80 035 ÷ 2 = 40 017 + 1;
  • 40 017 ÷ 2 = 20 008 + 1;
  • 20 008 ÷ 2 = 10 004 + 0;
  • 10 004 ÷ 2 = 5 002 + 0;
  • 5 002 ÷ 2 = 2 501 + 0;
  • 2 501 ÷ 2 = 1 250 + 1;
  • 1 250 ÷ 2 = 625 + 0;
  • 625 ÷ 2 = 312 + 1;
  • 312 ÷ 2 = 156 + 0;
  • 156 ÷ 2 = 78 + 0;
  • 78 ÷ 2 = 39 + 0;
  • 39 ÷ 2 = 19 + 1;
  • 19 ÷ 2 = 9 + 1;
  • 9 ÷ 2 = 4 + 1;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


11 000 010 101 110 110(10) =


10 0111 0001 0100 0111 0011 0110 1110 1001 1010 0011 0101 0101 1110(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 53 positions to the left, so that only one non zero digit remains to the left of it:


11 000 010 101 110 110(10) =


10 0111 0001 0100 0111 0011 0110 1110 1001 1010 0011 0101 0101 1110(2) =


10 0111 0001 0100 0111 0011 0110 1110 1001 1010 0011 0101 0101 1110(2) × 20 =


1.0011 1000 1010 0011 1001 1011 0111 0100 1101 0001 1010 1010 1111 0(2) × 253


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 53


Mantissa (not normalized):
1.0011 1000 1010 0011 1001 1011 0111 0100 1101 0001 1010 1010 1111 0


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


53 + 2(8-1) - 1 =


(53 + 127)(10) =


180(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 180 ÷ 2 = 90 + 0;
  • 90 ÷ 2 = 45 + 0;
  • 45 ÷ 2 = 22 + 1;
  • 22 ÷ 2 = 11 + 0;
  • 11 ÷ 2 = 5 + 1;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


180(10) =


1011 0100(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 001 1100 0101 0001 1100 1101 10 1110 1001 1010 0011 0101 0101 1110 =


001 1100 0101 0001 1100 1101


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1011 0100


Mantissa (23 bits) =
001 1100 0101 0001 1100 1101


The base ten decimal number 11 000 010 101 110 110 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1011 0100 - 001 1100 0101 0001 1100 1101

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 298.2 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 16 18:05 UTC (GMT)
Number -4 458 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 16 18:05 UTC (GMT)
Number 120.536 812 375 7 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 16 18:04 UTC (GMT)
Number 120.121 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 16 18:04 UTC (GMT)
Number 4 286 854 213 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 16 18:04 UTC (GMT)
Number -24 132 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 16 18:04 UTC (GMT)
Number 11.3 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 16 18:04 UTC (GMT)
Number 12 300 000 000 000 000 000 000 000 000 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 16 18:04 UTC (GMT)
Number 98 765 429 999 999 970 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 16 18:04 UTC (GMT)
Number 65 432.1 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 16 18:04 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111