Convert the Number 11 000 010 000 011 109 999 999 999 999 998 to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number. Detailed Explanations

Number 11 000 010 000 011 109 999 999 999 999 998(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (base 2) the integer number.


1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 11 000 010 000 011 109 999 999 999 999 998 ÷ 2 = 5 500 005 000 005 554 999 999 999 999 999 + 0;
  • 5 500 005 000 005 554 999 999 999 999 999 ÷ 2 = 2 750 002 500 002 777 499 999 999 999 999 + 1;
  • 2 750 002 500 002 777 499 999 999 999 999 ÷ 2 = 1 375 001 250 001 388 749 999 999 999 999 + 1;
  • 1 375 001 250 001 388 749 999 999 999 999 ÷ 2 = 687 500 625 000 694 374 999 999 999 999 + 1;
  • 687 500 625 000 694 374 999 999 999 999 ÷ 2 = 343 750 312 500 347 187 499 999 999 999 + 1;
  • 343 750 312 500 347 187 499 999 999 999 ÷ 2 = 171 875 156 250 173 593 749 999 999 999 + 1;
  • 171 875 156 250 173 593 749 999 999 999 ÷ 2 = 85 937 578 125 086 796 874 999 999 999 + 1;
  • 85 937 578 125 086 796 874 999 999 999 ÷ 2 = 42 968 789 062 543 398 437 499 999 999 + 1;
  • 42 968 789 062 543 398 437 499 999 999 ÷ 2 = 21 484 394 531 271 699 218 749 999 999 + 1;
  • 21 484 394 531 271 699 218 749 999 999 ÷ 2 = 10 742 197 265 635 849 609 374 999 999 + 1;
  • 10 742 197 265 635 849 609 374 999 999 ÷ 2 = 5 371 098 632 817 924 804 687 499 999 + 1;
  • 5 371 098 632 817 924 804 687 499 999 ÷ 2 = 2 685 549 316 408 962 402 343 749 999 + 1;
  • 2 685 549 316 408 962 402 343 749 999 ÷ 2 = 1 342 774 658 204 481 201 171 874 999 + 1;
  • 1 342 774 658 204 481 201 171 874 999 ÷ 2 = 671 387 329 102 240 600 585 937 499 + 1;
  • 671 387 329 102 240 600 585 937 499 ÷ 2 = 335 693 664 551 120 300 292 968 749 + 1;
  • 335 693 664 551 120 300 292 968 749 ÷ 2 = 167 846 832 275 560 150 146 484 374 + 1;
  • 167 846 832 275 560 150 146 484 374 ÷ 2 = 83 923 416 137 780 075 073 242 187 + 0;
  • 83 923 416 137 780 075 073 242 187 ÷ 2 = 41 961 708 068 890 037 536 621 093 + 1;
  • 41 961 708 068 890 037 536 621 093 ÷ 2 = 20 980 854 034 445 018 768 310 546 + 1;
  • 20 980 854 034 445 018 768 310 546 ÷ 2 = 10 490 427 017 222 509 384 155 273 + 0;
  • 10 490 427 017 222 509 384 155 273 ÷ 2 = 5 245 213 508 611 254 692 077 636 + 1;
  • 5 245 213 508 611 254 692 077 636 ÷ 2 = 2 622 606 754 305 627 346 038 818 + 0;
  • 2 622 606 754 305 627 346 038 818 ÷ 2 = 1 311 303 377 152 813 673 019 409 + 0;
  • 1 311 303 377 152 813 673 019 409 ÷ 2 = 655 651 688 576 406 836 509 704 + 1;
  • 655 651 688 576 406 836 509 704 ÷ 2 = 327 825 844 288 203 418 254 852 + 0;
  • 327 825 844 288 203 418 254 852 ÷ 2 = 163 912 922 144 101 709 127 426 + 0;
  • 163 912 922 144 101 709 127 426 ÷ 2 = 81 956 461 072 050 854 563 713 + 0;
  • 81 956 461 072 050 854 563 713 ÷ 2 = 40 978 230 536 025 427 281 856 + 1;
  • 40 978 230 536 025 427 281 856 ÷ 2 = 20 489 115 268 012 713 640 928 + 0;
  • 20 489 115 268 012 713 640 928 ÷ 2 = 10 244 557 634 006 356 820 464 + 0;
  • 10 244 557 634 006 356 820 464 ÷ 2 = 5 122 278 817 003 178 410 232 + 0;
  • 5 122 278 817 003 178 410 232 ÷ 2 = 2 561 139 408 501 589 205 116 + 0;
  • 2 561 139 408 501 589 205 116 ÷ 2 = 1 280 569 704 250 794 602 558 + 0;
  • 1 280 569 704 250 794 602 558 ÷ 2 = 640 284 852 125 397 301 279 + 0;
  • 640 284 852 125 397 301 279 ÷ 2 = 320 142 426 062 698 650 639 + 1;
  • 320 142 426 062 698 650 639 ÷ 2 = 160 071 213 031 349 325 319 + 1;
  • 160 071 213 031 349 325 319 ÷ 2 = 80 035 606 515 674 662 659 + 1;
  • 80 035 606 515 674 662 659 ÷ 2 = 40 017 803 257 837 331 329 + 1;
  • 40 017 803 257 837 331 329 ÷ 2 = 20 008 901 628 918 665 664 + 1;
  • 20 008 901 628 918 665 664 ÷ 2 = 10 004 450 814 459 332 832 + 0;
  • 10 004 450 814 459 332 832 ÷ 2 = 5 002 225 407 229 666 416 + 0;
  • 5 002 225 407 229 666 416 ÷ 2 = 2 501 112 703 614 833 208 + 0;
  • 2 501 112 703 614 833 208 ÷ 2 = 1 250 556 351 807 416 604 + 0;
  • 1 250 556 351 807 416 604 ÷ 2 = 625 278 175 903 708 302 + 0;
  • 625 278 175 903 708 302 ÷ 2 = 312 639 087 951 854 151 + 0;
  • 312 639 087 951 854 151 ÷ 2 = 156 319 543 975 927 075 + 1;
  • 156 319 543 975 927 075 ÷ 2 = 78 159 771 987 963 537 + 1;
  • 78 159 771 987 963 537 ÷ 2 = 39 079 885 993 981 768 + 1;
  • 39 079 885 993 981 768 ÷ 2 = 19 539 942 996 990 884 + 0;
  • 19 539 942 996 990 884 ÷ 2 = 9 769 971 498 495 442 + 0;
  • 9 769 971 498 495 442 ÷ 2 = 4 884 985 749 247 721 + 0;
  • 4 884 985 749 247 721 ÷ 2 = 2 442 492 874 623 860 + 1;
  • 2 442 492 874 623 860 ÷ 2 = 1 221 246 437 311 930 + 0;
  • 1 221 246 437 311 930 ÷ 2 = 610 623 218 655 965 + 0;
  • 610 623 218 655 965 ÷ 2 = 305 311 609 327 982 + 1;
  • 305 311 609 327 982 ÷ 2 = 152 655 804 663 991 + 0;
  • 152 655 804 663 991 ÷ 2 = 76 327 902 331 995 + 1;
  • 76 327 902 331 995 ÷ 2 = 38 163 951 165 997 + 1;
  • 38 163 951 165 997 ÷ 2 = 19 081 975 582 998 + 1;
  • 19 081 975 582 998 ÷ 2 = 9 540 987 791 499 + 0;
  • 9 540 987 791 499 ÷ 2 = 4 770 493 895 749 + 1;
  • 4 770 493 895 749 ÷ 2 = 2 385 246 947 874 + 1;
  • 2 385 246 947 874 ÷ 2 = 1 192 623 473 937 + 0;
  • 1 192 623 473 937 ÷ 2 = 596 311 736 968 + 1;
  • 596 311 736 968 ÷ 2 = 298 155 868 484 + 0;
  • 298 155 868 484 ÷ 2 = 149 077 934 242 + 0;
  • 149 077 934 242 ÷ 2 = 74 538 967 121 + 0;
  • 74 538 967 121 ÷ 2 = 37 269 483 560 + 1;
  • 37 269 483 560 ÷ 2 = 18 634 741 780 + 0;
  • 18 634 741 780 ÷ 2 = 9 317 370 890 + 0;
  • 9 317 370 890 ÷ 2 = 4 658 685 445 + 0;
  • 4 658 685 445 ÷ 2 = 2 329 342 722 + 1;
  • 2 329 342 722 ÷ 2 = 1 164 671 361 + 0;
  • 1 164 671 361 ÷ 2 = 582 335 680 + 1;
  • 582 335 680 ÷ 2 = 291 167 840 + 0;
  • 291 167 840 ÷ 2 = 145 583 920 + 0;
  • 145 583 920 ÷ 2 = 72 791 960 + 0;
  • 72 791 960 ÷ 2 = 36 395 980 + 0;
  • 36 395 980 ÷ 2 = 18 197 990 + 0;
  • 18 197 990 ÷ 2 = 9 098 995 + 0;
  • 9 098 995 ÷ 2 = 4 549 497 + 1;
  • 4 549 497 ÷ 2 = 2 274 748 + 1;
  • 2 274 748 ÷ 2 = 1 137 374 + 0;
  • 1 137 374 ÷ 2 = 568 687 + 0;
  • 568 687 ÷ 2 = 284 343 + 1;
  • 284 343 ÷ 2 = 142 171 + 1;
  • 142 171 ÷ 2 = 71 085 + 1;
  • 71 085 ÷ 2 = 35 542 + 1;
  • 35 542 ÷ 2 = 17 771 + 0;
  • 17 771 ÷ 2 = 8 885 + 1;
  • 8 885 ÷ 2 = 4 442 + 1;
  • 4 442 ÷ 2 = 2 221 + 0;
  • 2 221 ÷ 2 = 1 110 + 1;
  • 1 110 ÷ 2 = 555 + 0;
  • 555 ÷ 2 = 277 + 1;
  • 277 ÷ 2 = 138 + 1;
  • 138 ÷ 2 = 69 + 0;
  • 69 ÷ 2 = 34 + 1;
  • 34 ÷ 2 = 17 + 0;
  • 17 ÷ 2 = 8 + 1;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


11 000 010 000 011 109 999 999 999 999 998(10) =


1000 1010 1101 0110 1111 0011 0000 0010 1000 1000 1011 0111 0100 1000 1110 0000 0111 1100 0000 1000 1001 0110 1111 1111 1111 1110(2)



The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


3. Normalize the binary representation of the number.

Shift the decimal mark 103 positions to the left, so that only one non zero digit remains to the left of it:


11 000 010 000 011 109 999 999 999 999 998(10) =


1000 1010 1101 0110 1111 0011 0000 0010 1000 1000 1011 0111 0100 1000 1110 0000 0111 1100 0000 1000 1001 0110 1111 1111 1111 1110(2) =


1000 1010 1101 0110 1111 0011 0000 0010 1000 1000 1011 0111 0100 1000 1110 0000 0111 1100 0000 1000 1001 0110 1111 1111 1111 1110(2) × 20 =


1.0001 0101 1010 1101 1110 0110 0000 0101 0001 0001 0110 1110 1001 0001 1100 0000 1111 1000 0001 0001 0010 1101 1111 1111 1111 110(2) × 2103


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 103


Mantissa (not normalized):
1.0001 0101 1010 1101 1110 0110 0000 0101 0001 0001 0110 1110 1001 0001 1100 0000 1111 1000 0001 0001 0010 1101 1111 1111 1111 110


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


103 + 2(8-1) - 1 =


(103 + 127)(10) =


230(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 230 ÷ 2 = 115 + 0;
  • 115 ÷ 2 = 57 + 1;
  • 57 ÷ 2 = 28 + 1;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


230(10) =


1110 0110(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 000 1010 1101 0110 1111 0011 0000 0010 1000 1000 1011 0111 0100 1000 1110 0000 0111 1100 0000 1000 1001 0110 1111 1111 1111 1110 =


000 1010 1101 0110 1111 0011


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1110 0110


Mantissa (23 bits) =
000 1010 1101 0110 1111 0011


The base ten decimal number 11 000 010 000 011 109 999 999 999 999 998 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1110 0110 - 000 1010 1101 0110 1111 0011

(32 bits IEEE 754)

Number 11 000 010 000 011 109 999 999 999 999 997 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point representation = ?

Number 11 000 010 000 011 109 999 999 999 999 999 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point representation = ?

Convert to 32 bit single precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 11 000 010 000 011 109 999 999 999 999 998 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:07 UTC (GMT)
Number 11 011 010.102 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:07 UTC (GMT)
Number 3 254 779 936 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:07 UTC (GMT)
Number 3 239 999 999 999 999 999 999 981 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:07 UTC (GMT)
Number 23 423 423 423 443 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:07 UTC (GMT)
Number 109 999 999 999 999 999 999 999 999 999 999 999 984 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:07 UTC (GMT)
Number 384 747 294.484 849 294 839 398 493 929 194 1 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:07 UTC (GMT)
Number 1 110 011 000 010 101 101 011 011 109 978 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:07 UTC (GMT)
Number 400 734 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:07 UTC (GMT)
Number 11 011 010 965 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:07 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal