Convert the Number 1 088 815 089 to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number. Detailed Explanations

Number 1 088 815 089(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (base 2) the integer number.


1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 1 088 815 089 ÷ 2 = 544 407 544 + 1;
  • 544 407 544 ÷ 2 = 272 203 772 + 0;
  • 272 203 772 ÷ 2 = 136 101 886 + 0;
  • 136 101 886 ÷ 2 = 68 050 943 + 0;
  • 68 050 943 ÷ 2 = 34 025 471 + 1;
  • 34 025 471 ÷ 2 = 17 012 735 + 1;
  • 17 012 735 ÷ 2 = 8 506 367 + 1;
  • 8 506 367 ÷ 2 = 4 253 183 + 1;
  • 4 253 183 ÷ 2 = 2 126 591 + 1;
  • 2 126 591 ÷ 2 = 1 063 295 + 1;
  • 1 063 295 ÷ 2 = 531 647 + 1;
  • 531 647 ÷ 2 = 265 823 + 1;
  • 265 823 ÷ 2 = 132 911 + 1;
  • 132 911 ÷ 2 = 66 455 + 1;
  • 66 455 ÷ 2 = 33 227 + 1;
  • 33 227 ÷ 2 = 16 613 + 1;
  • 16 613 ÷ 2 = 8 306 + 1;
  • 8 306 ÷ 2 = 4 153 + 0;
  • 4 153 ÷ 2 = 2 076 + 1;
  • 2 076 ÷ 2 = 1 038 + 0;
  • 1 038 ÷ 2 = 519 + 0;
  • 519 ÷ 2 = 259 + 1;
  • 259 ÷ 2 = 129 + 1;
  • 129 ÷ 2 = 64 + 1;
  • 64 ÷ 2 = 32 + 0;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


1 088 815 089(10) =


100 0000 1110 0101 1111 1111 1111 0001(2)



The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


3. Normalize the binary representation of the number.

Shift the decimal mark 30 positions to the left, so that only one non zero digit remains to the left of it:


1 088 815 089(10) =


100 0000 1110 0101 1111 1111 1111 0001(2) =


100 0000 1110 0101 1111 1111 1111 0001(2) × 20 =


1.0000 0011 1001 0111 1111 1111 1100 01(2) × 230


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 30


Mantissa (not normalized):
1.0000 0011 1001 0111 1111 1111 1100 01


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


30 + 2(8-1) - 1 =


(30 + 127)(10) =


157(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 157 ÷ 2 = 78 + 1;
  • 78 ÷ 2 = 39 + 0;
  • 39 ÷ 2 = 19 + 1;
  • 19 ÷ 2 = 9 + 1;
  • 9 ÷ 2 = 4 + 1;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


157(10) =


1001 1101(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 000 0001 1100 1011 1111 1111 111 0001 =


000 0001 1100 1011 1111 1111


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1001 1101


Mantissa (23 bits) =
000 0001 1100 1011 1111 1111


The base ten decimal number 1 088 815 089 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1001 1101 - 000 0001 1100 1011 1111 1111

(32 bits IEEE 754)

Number 1 088 815 088 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point representation = ?

Number 1 088 815 090 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point representation = ?

Convert to 32 bit single precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 1 088 815 089 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 13:49 UTC (GMT)
Number 0.019 94 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 13:49 UTC (GMT)
Number 67.622 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 13:49 UTC (GMT)
Number 3 255 828 472 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 13:49 UTC (GMT)
Number -196.253 417 5 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 13:49 UTC (GMT)
Number 75 019 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 13:49 UTC (GMT)
Number 1 000 010 010 111 000 099 999 999 999 990 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 13:49 UTC (GMT)
Number 32.089 83 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 13:49 UTC (GMT)
Number -9 761 956 864 928 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 13:49 UTC (GMT)
Number 8 174.36 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 13:49 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal