Convert 101 111 110 999 999 999 999 999 999 999 982 to 32 Bit Single Precision IEEE 754 Binary Floating Point Standard, From a Base 10 Decimal Number

101 111 110 999 999 999 999 999 999 999 982(10) to 32 bit single precision IEEE 754 binary floating point (1 bit for sign, 8 bits for exponent, 23 bits for mantissa) = ?

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 101 111 110 999 999 999 999 999 999 999 982 ÷ 2 = 50 555 555 499 999 999 999 999 999 999 991 + 0;
  • 50 555 555 499 999 999 999 999 999 999 991 ÷ 2 = 25 277 777 749 999 999 999 999 999 999 995 + 1;
  • 25 277 777 749 999 999 999 999 999 999 995 ÷ 2 = 12 638 888 874 999 999 999 999 999 999 997 + 1;
  • 12 638 888 874 999 999 999 999 999 999 997 ÷ 2 = 6 319 444 437 499 999 999 999 999 999 998 + 1;
  • 6 319 444 437 499 999 999 999 999 999 998 ÷ 2 = 3 159 722 218 749 999 999 999 999 999 999 + 0;
  • 3 159 722 218 749 999 999 999 999 999 999 ÷ 2 = 1 579 861 109 374 999 999 999 999 999 999 + 1;
  • 1 579 861 109 374 999 999 999 999 999 999 ÷ 2 = 789 930 554 687 499 999 999 999 999 999 + 1;
  • 789 930 554 687 499 999 999 999 999 999 ÷ 2 = 394 965 277 343 749 999 999 999 999 999 + 1;
  • 394 965 277 343 749 999 999 999 999 999 ÷ 2 = 197 482 638 671 874 999 999 999 999 999 + 1;
  • 197 482 638 671 874 999 999 999 999 999 ÷ 2 = 98 741 319 335 937 499 999 999 999 999 + 1;
  • 98 741 319 335 937 499 999 999 999 999 ÷ 2 = 49 370 659 667 968 749 999 999 999 999 + 1;
  • 49 370 659 667 968 749 999 999 999 999 ÷ 2 = 24 685 329 833 984 374 999 999 999 999 + 1;
  • 24 685 329 833 984 374 999 999 999 999 ÷ 2 = 12 342 664 916 992 187 499 999 999 999 + 1;
  • 12 342 664 916 992 187 499 999 999 999 ÷ 2 = 6 171 332 458 496 093 749 999 999 999 + 1;
  • 6 171 332 458 496 093 749 999 999 999 ÷ 2 = 3 085 666 229 248 046 874 999 999 999 + 1;
  • 3 085 666 229 248 046 874 999 999 999 ÷ 2 = 1 542 833 114 624 023 437 499 999 999 + 1;
  • 1 542 833 114 624 023 437 499 999 999 ÷ 2 = 771 416 557 312 011 718 749 999 999 + 1;
  • 771 416 557 312 011 718 749 999 999 ÷ 2 = 385 708 278 656 005 859 374 999 999 + 1;
  • 385 708 278 656 005 859 374 999 999 ÷ 2 = 192 854 139 328 002 929 687 499 999 + 1;
  • 192 854 139 328 002 929 687 499 999 ÷ 2 = 96 427 069 664 001 464 843 749 999 + 1;
  • 96 427 069 664 001 464 843 749 999 ÷ 2 = 48 213 534 832 000 732 421 874 999 + 1;
  • 48 213 534 832 000 732 421 874 999 ÷ 2 = 24 106 767 416 000 366 210 937 499 + 1;
  • 24 106 767 416 000 366 210 937 499 ÷ 2 = 12 053 383 708 000 183 105 468 749 + 1;
  • 12 053 383 708 000 183 105 468 749 ÷ 2 = 6 026 691 854 000 091 552 734 374 + 1;
  • 6 026 691 854 000 091 552 734 374 ÷ 2 = 3 013 345 927 000 045 776 367 187 + 0;
  • 3 013 345 927 000 045 776 367 187 ÷ 2 = 1 506 672 963 500 022 888 183 593 + 1;
  • 1 506 672 963 500 022 888 183 593 ÷ 2 = 753 336 481 750 011 444 091 796 + 1;
  • 753 336 481 750 011 444 091 796 ÷ 2 = 376 668 240 875 005 722 045 898 + 0;
  • 376 668 240 875 005 722 045 898 ÷ 2 = 188 334 120 437 502 861 022 949 + 0;
  • 188 334 120 437 502 861 022 949 ÷ 2 = 94 167 060 218 751 430 511 474 + 1;
  • 94 167 060 218 751 430 511 474 ÷ 2 = 47 083 530 109 375 715 255 737 + 0;
  • 47 083 530 109 375 715 255 737 ÷ 2 = 23 541 765 054 687 857 627 868 + 1;
  • 23 541 765 054 687 857 627 868 ÷ 2 = 11 770 882 527 343 928 813 934 + 0;
  • 11 770 882 527 343 928 813 934 ÷ 2 = 5 885 441 263 671 964 406 967 + 0;
  • 5 885 441 263 671 964 406 967 ÷ 2 = 2 942 720 631 835 982 203 483 + 1;
  • 2 942 720 631 835 982 203 483 ÷ 2 = 1 471 360 315 917 991 101 741 + 1;
  • 1 471 360 315 917 991 101 741 ÷ 2 = 735 680 157 958 995 550 870 + 1;
  • 735 680 157 958 995 550 870 ÷ 2 = 367 840 078 979 497 775 435 + 0;
  • 367 840 078 979 497 775 435 ÷ 2 = 183 920 039 489 748 887 717 + 1;
  • 183 920 039 489 748 887 717 ÷ 2 = 91 960 019 744 874 443 858 + 1;
  • 91 960 019 744 874 443 858 ÷ 2 = 45 980 009 872 437 221 929 + 0;
  • 45 980 009 872 437 221 929 ÷ 2 = 22 990 004 936 218 610 964 + 1;
  • 22 990 004 936 218 610 964 ÷ 2 = 11 495 002 468 109 305 482 + 0;
  • 11 495 002 468 109 305 482 ÷ 2 = 5 747 501 234 054 652 741 + 0;
  • 5 747 501 234 054 652 741 ÷ 2 = 2 873 750 617 027 326 370 + 1;
  • 2 873 750 617 027 326 370 ÷ 2 = 1 436 875 308 513 663 185 + 0;
  • 1 436 875 308 513 663 185 ÷ 2 = 718 437 654 256 831 592 + 1;
  • 718 437 654 256 831 592 ÷ 2 = 359 218 827 128 415 796 + 0;
  • 359 218 827 128 415 796 ÷ 2 = 179 609 413 564 207 898 + 0;
  • 179 609 413 564 207 898 ÷ 2 = 89 804 706 782 103 949 + 0;
  • 89 804 706 782 103 949 ÷ 2 = 44 902 353 391 051 974 + 1;
  • 44 902 353 391 051 974 ÷ 2 = 22 451 176 695 525 987 + 0;
  • 22 451 176 695 525 987 ÷ 2 = 11 225 588 347 762 993 + 1;
  • 11 225 588 347 762 993 ÷ 2 = 5 612 794 173 881 496 + 1;
  • 5 612 794 173 881 496 ÷ 2 = 2 806 397 086 940 748 + 0;
  • 2 806 397 086 940 748 ÷ 2 = 1 403 198 543 470 374 + 0;
  • 1 403 198 543 470 374 ÷ 2 = 701 599 271 735 187 + 0;
  • 701 599 271 735 187 ÷ 2 = 350 799 635 867 593 + 1;
  • 350 799 635 867 593 ÷ 2 = 175 399 817 933 796 + 1;
  • 175 399 817 933 796 ÷ 2 = 87 699 908 966 898 + 0;
  • 87 699 908 966 898 ÷ 2 = 43 849 954 483 449 + 0;
  • 43 849 954 483 449 ÷ 2 = 21 924 977 241 724 + 1;
  • 21 924 977 241 724 ÷ 2 = 10 962 488 620 862 + 0;
  • 10 962 488 620 862 ÷ 2 = 5 481 244 310 431 + 0;
  • 5 481 244 310 431 ÷ 2 = 2 740 622 155 215 + 1;
  • 2 740 622 155 215 ÷ 2 = 1 370 311 077 607 + 1;
  • 1 370 311 077 607 ÷ 2 = 685 155 538 803 + 1;
  • 685 155 538 803 ÷ 2 = 342 577 769 401 + 1;
  • 342 577 769 401 ÷ 2 = 171 288 884 700 + 1;
  • 171 288 884 700 ÷ 2 = 85 644 442 350 + 0;
  • 85 644 442 350 ÷ 2 = 42 822 221 175 + 0;
  • 42 822 221 175 ÷ 2 = 21 411 110 587 + 1;
  • 21 411 110 587 ÷ 2 = 10 705 555 293 + 1;
  • 10 705 555 293 ÷ 2 = 5 352 777 646 + 1;
  • 5 352 777 646 ÷ 2 = 2 676 388 823 + 0;
  • 2 676 388 823 ÷ 2 = 1 338 194 411 + 1;
  • 1 338 194 411 ÷ 2 = 669 097 205 + 1;
  • 669 097 205 ÷ 2 = 334 548 602 + 1;
  • 334 548 602 ÷ 2 = 167 274 301 + 0;
  • 167 274 301 ÷ 2 = 83 637 150 + 1;
  • 83 637 150 ÷ 2 = 41 818 575 + 0;
  • 41 818 575 ÷ 2 = 20 909 287 + 1;
  • 20 909 287 ÷ 2 = 10 454 643 + 1;
  • 10 454 643 ÷ 2 = 5 227 321 + 1;
  • 5 227 321 ÷ 2 = 2 613 660 + 1;
  • 2 613 660 ÷ 2 = 1 306 830 + 0;
  • 1 306 830 ÷ 2 = 653 415 + 0;
  • 653 415 ÷ 2 = 326 707 + 1;
  • 326 707 ÷ 2 = 163 353 + 1;
  • 163 353 ÷ 2 = 81 676 + 1;
  • 81 676 ÷ 2 = 40 838 + 0;
  • 40 838 ÷ 2 = 20 419 + 0;
  • 20 419 ÷ 2 = 10 209 + 1;
  • 10 209 ÷ 2 = 5 104 + 1;
  • 5 104 ÷ 2 = 2 552 + 0;
  • 2 552 ÷ 2 = 1 276 + 0;
  • 1 276 ÷ 2 = 638 + 0;
  • 638 ÷ 2 = 319 + 0;
  • 319 ÷ 2 = 159 + 1;
  • 159 ÷ 2 = 79 + 1;
  • 79 ÷ 2 = 39 + 1;
  • 39 ÷ 2 = 19 + 1;
  • 19 ÷ 2 = 9 + 1;
  • 9 ÷ 2 = 4 + 1;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


101 111 110 999 999 999 999 999 999 999 982(10) =


100 1111 1100 0011 0011 1001 1110 1011 1011 1001 1111 0010 0110 0011 0100 0101 0010 1101 1100 1010 0110 1111 1111 1111 1111 1110 1110(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 106 positions to the left so that only one non zero digit remains to the left of it:


101 111 110 999 999 999 999 999 999 999 982(10) =


100 1111 1100 0011 0011 1001 1110 1011 1011 1001 1111 0010 0110 0011 0100 0101 0010 1101 1100 1010 0110 1111 1111 1111 1111 1110 1110(2) =


100 1111 1100 0011 0011 1001 1110 1011 1011 1001 1111 0010 0110 0011 0100 0101 0010 1101 1100 1010 0110 1111 1111 1111 1111 1110 1110(2) × 20 =


1.0011 1111 0000 1100 1110 0111 1010 1110 1110 0111 1100 1001 1000 1101 0001 0100 1011 0111 0010 1001 1011 1111 1111 1111 1111 1011 10(2) × 2106


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign: 0 (a positive number)


Exponent (unadjusted): 106


Mantissa (not normalized):
1.0011 1111 0000 1100 1110 0111 1010 1110 1110 0111 1100 1001 1000 1101 0001 0100 1011 0111 0010 1001 1011 1111 1111 1111 1111 1011 10


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


106 + 2(8-1) - 1 =


(106 + 127)(10) =


233(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 233 ÷ 2 = 116 + 1;
  • 116 ÷ 2 = 58 + 0;
  • 58 ÷ 2 = 29 + 0;
  • 29 ÷ 2 = 14 + 1;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above:


Exponent (adjusted) =


233(10) =


1110 1001(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 001 1111 1000 0110 0111 0011 110 1011 1011 1001 1111 0010 0110 0011 0100 0101 0010 1101 1100 1010 0110 1111 1111 1111 1111 1110 1110 =


001 1111 1000 0110 0111 0011


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1110 1001


Mantissa (23 bits) =
001 1111 1000 0110 0111 0011


Number 101 111 110 999 999 999 999 999 999 999 982 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point:
0 - 1110 1001 - 001 1111 1000 0110 0111 0011

(32 bits IEEE 754)

More operations of this kind:

101 111 110 999 999 999 999 999 999 999 981 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point = ?

101 111 110 999 999 999 999 999 999 999 983 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point = ?


Convert to 32 bit single precision IEEE 754 binary floating point standard

A number in 32 bit single precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (8 bits) and mantissa (23 bits)

Latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

101 111 110 999 999 999 999 999 999 999 982 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point = ? May 29 15:29 UTC (GMT)
2 020.629 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point = ? May 29 15:29 UTC (GMT)
389.821 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point = ? May 29 15:28 UTC (GMT)
-79 408 984 397 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point = ? May 29 15:28 UTC (GMT)
11.906 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point = ? May 29 15:28 UTC (GMT)
5.248 59 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point = ? May 29 15:28 UTC (GMT)
1.175 48 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point = ? May 29 15:28 UTC (GMT)
0.378 2 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point = ? May 29 15:28 UTC (GMT)
0.853 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point = ? May 29 15:28 UTC (GMT)
0.041 25 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point = ? May 29 15:28 UTC (GMT)
9 131 984 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point = ? May 29 15:28 UTC (GMT)
1 135.93 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point = ? May 29 15:28 UTC (GMT)
9.6 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point = ? May 29 15:28 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =


    1 - 1000 0011 - 100 1010 1100 0110 1010 0111