Convert the Number 10 111 110 111 000 999 999 999 999 999 982 to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number. Detailed Explanations

Number 10 111 110 111 000 999 999 999 999 999 982(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (base 2) the integer number.


1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 10 111 110 111 000 999 999 999 999 999 982 ÷ 2 = 5 055 555 055 500 499 999 999 999 999 991 + 0;
  • 5 055 555 055 500 499 999 999 999 999 991 ÷ 2 = 2 527 777 527 750 249 999 999 999 999 995 + 1;
  • 2 527 777 527 750 249 999 999 999 999 995 ÷ 2 = 1 263 888 763 875 124 999 999 999 999 997 + 1;
  • 1 263 888 763 875 124 999 999 999 999 997 ÷ 2 = 631 944 381 937 562 499 999 999 999 998 + 1;
  • 631 944 381 937 562 499 999 999 999 998 ÷ 2 = 315 972 190 968 781 249 999 999 999 999 + 0;
  • 315 972 190 968 781 249 999 999 999 999 ÷ 2 = 157 986 095 484 390 624 999 999 999 999 + 1;
  • 157 986 095 484 390 624 999 999 999 999 ÷ 2 = 78 993 047 742 195 312 499 999 999 999 + 1;
  • 78 993 047 742 195 312 499 999 999 999 ÷ 2 = 39 496 523 871 097 656 249 999 999 999 + 1;
  • 39 496 523 871 097 656 249 999 999 999 ÷ 2 = 19 748 261 935 548 828 124 999 999 999 + 1;
  • 19 748 261 935 548 828 124 999 999 999 ÷ 2 = 9 874 130 967 774 414 062 499 999 999 + 1;
  • 9 874 130 967 774 414 062 499 999 999 ÷ 2 = 4 937 065 483 887 207 031 249 999 999 + 1;
  • 4 937 065 483 887 207 031 249 999 999 ÷ 2 = 2 468 532 741 943 603 515 624 999 999 + 1;
  • 2 468 532 741 943 603 515 624 999 999 ÷ 2 = 1 234 266 370 971 801 757 812 499 999 + 1;
  • 1 234 266 370 971 801 757 812 499 999 ÷ 2 = 617 133 185 485 900 878 906 249 999 + 1;
  • 617 133 185 485 900 878 906 249 999 ÷ 2 = 308 566 592 742 950 439 453 124 999 + 1;
  • 308 566 592 742 950 439 453 124 999 ÷ 2 = 154 283 296 371 475 219 726 562 499 + 1;
  • 154 283 296 371 475 219 726 562 499 ÷ 2 = 77 141 648 185 737 609 863 281 249 + 1;
  • 77 141 648 185 737 609 863 281 249 ÷ 2 = 38 570 824 092 868 804 931 640 624 + 1;
  • 38 570 824 092 868 804 931 640 624 ÷ 2 = 19 285 412 046 434 402 465 820 312 + 0;
  • 19 285 412 046 434 402 465 820 312 ÷ 2 = 9 642 706 023 217 201 232 910 156 + 0;
  • 9 642 706 023 217 201 232 910 156 ÷ 2 = 4 821 353 011 608 600 616 455 078 + 0;
  • 4 821 353 011 608 600 616 455 078 ÷ 2 = 2 410 676 505 804 300 308 227 539 + 0;
  • 2 410 676 505 804 300 308 227 539 ÷ 2 = 1 205 338 252 902 150 154 113 769 + 1;
  • 1 205 338 252 902 150 154 113 769 ÷ 2 = 602 669 126 451 075 077 056 884 + 1;
  • 602 669 126 451 075 077 056 884 ÷ 2 = 301 334 563 225 537 538 528 442 + 0;
  • 301 334 563 225 537 538 528 442 ÷ 2 = 150 667 281 612 768 769 264 221 + 0;
  • 150 667 281 612 768 769 264 221 ÷ 2 = 75 333 640 806 384 384 632 110 + 1;
  • 75 333 640 806 384 384 632 110 ÷ 2 = 37 666 820 403 192 192 316 055 + 0;
  • 37 666 820 403 192 192 316 055 ÷ 2 = 18 833 410 201 596 096 158 027 + 1;
  • 18 833 410 201 596 096 158 027 ÷ 2 = 9 416 705 100 798 048 079 013 + 1;
  • 9 416 705 100 798 048 079 013 ÷ 2 = 4 708 352 550 399 024 039 506 + 1;
  • 4 708 352 550 399 024 039 506 ÷ 2 = 2 354 176 275 199 512 019 753 + 0;
  • 2 354 176 275 199 512 019 753 ÷ 2 = 1 177 088 137 599 756 009 876 + 1;
  • 1 177 088 137 599 756 009 876 ÷ 2 = 588 544 068 799 878 004 938 + 0;
  • 588 544 068 799 878 004 938 ÷ 2 = 294 272 034 399 939 002 469 + 0;
  • 294 272 034 399 939 002 469 ÷ 2 = 147 136 017 199 969 501 234 + 1;
  • 147 136 017 199 969 501 234 ÷ 2 = 73 568 008 599 984 750 617 + 0;
  • 73 568 008 599 984 750 617 ÷ 2 = 36 784 004 299 992 375 308 + 1;
  • 36 784 004 299 992 375 308 ÷ 2 = 18 392 002 149 996 187 654 + 0;
  • 18 392 002 149 996 187 654 ÷ 2 = 9 196 001 074 998 093 827 + 0;
  • 9 196 001 074 998 093 827 ÷ 2 = 4 598 000 537 499 046 913 + 1;
  • 4 598 000 537 499 046 913 ÷ 2 = 2 299 000 268 749 523 456 + 1;
  • 2 299 000 268 749 523 456 ÷ 2 = 1 149 500 134 374 761 728 + 0;
  • 1 149 500 134 374 761 728 ÷ 2 = 574 750 067 187 380 864 + 0;
  • 574 750 067 187 380 864 ÷ 2 = 287 375 033 593 690 432 + 0;
  • 287 375 033 593 690 432 ÷ 2 = 143 687 516 796 845 216 + 0;
  • 143 687 516 796 845 216 ÷ 2 = 71 843 758 398 422 608 + 0;
  • 71 843 758 398 422 608 ÷ 2 = 35 921 879 199 211 304 + 0;
  • 35 921 879 199 211 304 ÷ 2 = 17 960 939 599 605 652 + 0;
  • 17 960 939 599 605 652 ÷ 2 = 8 980 469 799 802 826 + 0;
  • 8 980 469 799 802 826 ÷ 2 = 4 490 234 899 901 413 + 0;
  • 4 490 234 899 901 413 ÷ 2 = 2 245 117 449 950 706 + 1;
  • 2 245 117 449 950 706 ÷ 2 = 1 122 558 724 975 353 + 0;
  • 1 122 558 724 975 353 ÷ 2 = 561 279 362 487 676 + 1;
  • 561 279 362 487 676 ÷ 2 = 280 639 681 243 838 + 0;
  • 280 639 681 243 838 ÷ 2 = 140 319 840 621 919 + 0;
  • 140 319 840 621 919 ÷ 2 = 70 159 920 310 959 + 1;
  • 70 159 920 310 959 ÷ 2 = 35 079 960 155 479 + 1;
  • 35 079 960 155 479 ÷ 2 = 17 539 980 077 739 + 1;
  • 17 539 980 077 739 ÷ 2 = 8 769 990 038 869 + 1;
  • 8 769 990 038 869 ÷ 2 = 4 384 995 019 434 + 1;
  • 4 384 995 019 434 ÷ 2 = 2 192 497 509 717 + 0;
  • 2 192 497 509 717 ÷ 2 = 1 096 248 754 858 + 1;
  • 1 096 248 754 858 ÷ 2 = 548 124 377 429 + 0;
  • 548 124 377 429 ÷ 2 = 274 062 188 714 + 1;
  • 274 062 188 714 ÷ 2 = 137 031 094 357 + 0;
  • 137 031 094 357 ÷ 2 = 68 515 547 178 + 1;
  • 68 515 547 178 ÷ 2 = 34 257 773 589 + 0;
  • 34 257 773 589 ÷ 2 = 17 128 886 794 + 1;
  • 17 128 886 794 ÷ 2 = 8 564 443 397 + 0;
  • 8 564 443 397 ÷ 2 = 4 282 221 698 + 1;
  • 4 282 221 698 ÷ 2 = 2 141 110 849 + 0;
  • 2 141 110 849 ÷ 2 = 1 070 555 424 + 1;
  • 1 070 555 424 ÷ 2 = 535 277 712 + 0;
  • 535 277 712 ÷ 2 = 267 638 856 + 0;
  • 267 638 856 ÷ 2 = 133 819 428 + 0;
  • 133 819 428 ÷ 2 = 66 909 714 + 0;
  • 66 909 714 ÷ 2 = 33 454 857 + 0;
  • 33 454 857 ÷ 2 = 16 727 428 + 1;
  • 16 727 428 ÷ 2 = 8 363 714 + 0;
  • 8 363 714 ÷ 2 = 4 181 857 + 0;
  • 4 181 857 ÷ 2 = 2 090 928 + 1;
  • 2 090 928 ÷ 2 = 1 045 464 + 0;
  • 1 045 464 ÷ 2 = 522 732 + 0;
  • 522 732 ÷ 2 = 261 366 + 0;
  • 261 366 ÷ 2 = 130 683 + 0;
  • 130 683 ÷ 2 = 65 341 + 1;
  • 65 341 ÷ 2 = 32 670 + 1;
  • 32 670 ÷ 2 = 16 335 + 0;
  • 16 335 ÷ 2 = 8 167 + 1;
  • 8 167 ÷ 2 = 4 083 + 1;
  • 4 083 ÷ 2 = 2 041 + 1;
  • 2 041 ÷ 2 = 1 020 + 1;
  • 1 020 ÷ 2 = 510 + 0;
  • 510 ÷ 2 = 255 + 0;
  • 255 ÷ 2 = 127 + 1;
  • 127 ÷ 2 = 63 + 1;
  • 63 ÷ 2 = 31 + 1;
  • 31 ÷ 2 = 15 + 1;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


10 111 110 111 000 999 999 999 999 999 982(10) =


111 1111 1001 1110 1100 0010 0100 0001 0101 0101 0101 1111 0010 1000 0000 0011 0010 1001 0111 0100 1100 0011 1111 1111 1110 1110(2)



The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


3. Normalize the binary representation of the number.

Shift the decimal mark 102 positions to the left, so that only one non zero digit remains to the left of it:


10 111 110 111 000 999 999 999 999 999 982(10) =


111 1111 1001 1110 1100 0010 0100 0001 0101 0101 0101 1111 0010 1000 0000 0011 0010 1001 0111 0100 1100 0011 1111 1111 1110 1110(2) =


111 1111 1001 1110 1100 0010 0100 0001 0101 0101 0101 1111 0010 1000 0000 0011 0010 1001 0111 0100 1100 0011 1111 1111 1110 1110(2) × 20 =


1.1111 1110 0111 1011 0000 1001 0000 0101 0101 0101 0111 1100 1010 0000 0000 1100 1010 0101 1101 0011 0000 1111 1111 1111 1011 10(2) × 2102


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 102


Mantissa (not normalized):
1.1111 1110 0111 1011 0000 1001 0000 0101 0101 0101 0111 1100 1010 0000 0000 1100 1010 0101 1101 0011 0000 1111 1111 1111 1011 10


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


102 + 2(8-1) - 1 =


(102 + 127)(10) =


229(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 229 ÷ 2 = 114 + 1;
  • 114 ÷ 2 = 57 + 0;
  • 57 ÷ 2 = 28 + 1;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


229(10) =


1110 0101(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 111 1111 0011 1101 1000 0100 100 0001 0101 0101 0101 1111 0010 1000 0000 0011 0010 1001 0111 0100 1100 0011 1111 1111 1110 1110 =


111 1111 0011 1101 1000 0100


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1110 0101


Mantissa (23 bits) =
111 1111 0011 1101 1000 0100


The base ten decimal number 10 111 110 111 000 999 999 999 999 999 982 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1110 0101 - 111 1111 0011 1101 1000 0100

(32 bits IEEE 754)

Number 10 111 110 111 000 999 999 999 999 999 981 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point representation = ?

Number 10 111 110 111 000 999 999 999 999 999 983 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point representation = ?

Convert to 32 bit single precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 10 111 110 111 000 999 999 999 999 999 982 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:00 UTC (GMT)
Number 111 000 100 010 041 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:00 UTC (GMT)
Number 66.406 3 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:00 UTC (GMT)
Number 6.036 7 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:00 UTC (GMT)
Number 6 004.5 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:00 UTC (GMT)
Number -44.843 72 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:00 UTC (GMT)
Number 110 101 100 122 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:00 UTC (GMT)
Number 49.781 4 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:00 UTC (GMT)
Number 3.439 804 651 110 3 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:00 UTC (GMT)
Number -2.03 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 14:00 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal