Convert the Number 101 011 110 100 094 to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number. Detailed Explanations

Number 101 011 110 100 094(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (base 2) the integer number.


1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 101 011 110 100 094 ÷ 2 = 50 505 555 050 047 + 0;
  • 50 505 555 050 047 ÷ 2 = 25 252 777 525 023 + 1;
  • 25 252 777 525 023 ÷ 2 = 12 626 388 762 511 + 1;
  • 12 626 388 762 511 ÷ 2 = 6 313 194 381 255 + 1;
  • 6 313 194 381 255 ÷ 2 = 3 156 597 190 627 + 1;
  • 3 156 597 190 627 ÷ 2 = 1 578 298 595 313 + 1;
  • 1 578 298 595 313 ÷ 2 = 789 149 297 656 + 1;
  • 789 149 297 656 ÷ 2 = 394 574 648 828 + 0;
  • 394 574 648 828 ÷ 2 = 197 287 324 414 + 0;
  • 197 287 324 414 ÷ 2 = 98 643 662 207 + 0;
  • 98 643 662 207 ÷ 2 = 49 321 831 103 + 1;
  • 49 321 831 103 ÷ 2 = 24 660 915 551 + 1;
  • 24 660 915 551 ÷ 2 = 12 330 457 775 + 1;
  • 12 330 457 775 ÷ 2 = 6 165 228 887 + 1;
  • 6 165 228 887 ÷ 2 = 3 082 614 443 + 1;
  • 3 082 614 443 ÷ 2 = 1 541 307 221 + 1;
  • 1 541 307 221 ÷ 2 = 770 653 610 + 1;
  • 770 653 610 ÷ 2 = 385 326 805 + 0;
  • 385 326 805 ÷ 2 = 192 663 402 + 1;
  • 192 663 402 ÷ 2 = 96 331 701 + 0;
  • 96 331 701 ÷ 2 = 48 165 850 + 1;
  • 48 165 850 ÷ 2 = 24 082 925 + 0;
  • 24 082 925 ÷ 2 = 12 041 462 + 1;
  • 12 041 462 ÷ 2 = 6 020 731 + 0;
  • 6 020 731 ÷ 2 = 3 010 365 + 1;
  • 3 010 365 ÷ 2 = 1 505 182 + 1;
  • 1 505 182 ÷ 2 = 752 591 + 0;
  • 752 591 ÷ 2 = 376 295 + 1;
  • 376 295 ÷ 2 = 188 147 + 1;
  • 188 147 ÷ 2 = 94 073 + 1;
  • 94 073 ÷ 2 = 47 036 + 1;
  • 47 036 ÷ 2 = 23 518 + 0;
  • 23 518 ÷ 2 = 11 759 + 0;
  • 11 759 ÷ 2 = 5 879 + 1;
  • 5 879 ÷ 2 = 2 939 + 1;
  • 2 939 ÷ 2 = 1 469 + 1;
  • 1 469 ÷ 2 = 734 + 1;
  • 734 ÷ 2 = 367 + 0;
  • 367 ÷ 2 = 183 + 1;
  • 183 ÷ 2 = 91 + 1;
  • 91 ÷ 2 = 45 + 1;
  • 45 ÷ 2 = 22 + 1;
  • 22 ÷ 2 = 11 + 0;
  • 11 ÷ 2 = 5 + 1;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


101 011 110 100 094(10) =


101 1011 1101 1110 0111 1011 0101 0101 1111 1100 0111 1110(2)



The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


3. Normalize the binary representation of the number.

Shift the decimal mark 46 positions to the left, so that only one non zero digit remains to the left of it:


101 011 110 100 094(10) =


101 1011 1101 1110 0111 1011 0101 0101 1111 1100 0111 1110(2) =


101 1011 1101 1110 0111 1011 0101 0101 1111 1100 0111 1110(2) × 20 =


1.0110 1111 0111 1001 1110 1101 0101 0111 1111 0001 1111 10(2) × 246


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 46


Mantissa (not normalized):
1.0110 1111 0111 1001 1110 1101 0101 0111 1111 0001 1111 10


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


46 + 2(8-1) - 1 =


(46 + 127)(10) =


173(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 173 ÷ 2 = 86 + 1;
  • 86 ÷ 2 = 43 + 0;
  • 43 ÷ 2 = 21 + 1;
  • 21 ÷ 2 = 10 + 1;
  • 10 ÷ 2 = 5 + 0;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


173(10) =


1010 1101(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 011 0111 1011 1100 1111 0110 101 0101 1111 1100 0111 1110 =


011 0111 1011 1100 1111 0110


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1010 1101


Mantissa (23 bits) =
011 0111 1011 1100 1111 0110


The base ten decimal number 101 011 110 100 094 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1010 1101 - 011 0111 1011 1100 1111 0110

(32 bits IEEE 754)

Number 101 011 110 100 093 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point representation = ?

Number 101 011 110 100 095 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point representation = ?

Convert to 32 bit single precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 101 011 110 100 094 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:12 UTC (GMT)
Number -39.688 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:12 UTC (GMT)
Number 1 799 969 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:12 UTC (GMT)
Number 1 100 110 100 000 000 000 000 000 001 127 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:12 UTC (GMT)
Number 2.004 321 375 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:12 UTC (GMT)
Number 1.361 129 467 683 753 853 853 498 6 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:12 UTC (GMT)
Number 827.41 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:12 UTC (GMT)
Number 0.003 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:12 UTC (GMT)
Number -2 452.062 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:12 UTC (GMT)
Number 3 260 022 796 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:12 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal