Decimal to 32 Bit IEEE 754 Binary: Convert Number 1 010 000 011 111 077 to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From Base Ten Decimal System

Number 1 010 000 011 111 077(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation standard (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 1 010 000 011 111 077 ÷ 2 = 505 000 005 555 538 + 1;
  • 505 000 005 555 538 ÷ 2 = 252 500 002 777 769 + 0;
  • 252 500 002 777 769 ÷ 2 = 126 250 001 388 884 + 1;
  • 126 250 001 388 884 ÷ 2 = 63 125 000 694 442 + 0;
  • 63 125 000 694 442 ÷ 2 = 31 562 500 347 221 + 0;
  • 31 562 500 347 221 ÷ 2 = 15 781 250 173 610 + 1;
  • 15 781 250 173 610 ÷ 2 = 7 890 625 086 805 + 0;
  • 7 890 625 086 805 ÷ 2 = 3 945 312 543 402 + 1;
  • 3 945 312 543 402 ÷ 2 = 1 972 656 271 701 + 0;
  • 1 972 656 271 701 ÷ 2 = 986 328 135 850 + 1;
  • 986 328 135 850 ÷ 2 = 493 164 067 925 + 0;
  • 493 164 067 925 ÷ 2 = 246 582 033 962 + 1;
  • 246 582 033 962 ÷ 2 = 123 291 016 981 + 0;
  • 123 291 016 981 ÷ 2 = 61 645 508 490 + 1;
  • 61 645 508 490 ÷ 2 = 30 822 754 245 + 0;
  • 30 822 754 245 ÷ 2 = 15 411 377 122 + 1;
  • 15 411 377 122 ÷ 2 = 7 705 688 561 + 0;
  • 7 705 688 561 ÷ 2 = 3 852 844 280 + 1;
  • 3 852 844 280 ÷ 2 = 1 926 422 140 + 0;
  • 1 926 422 140 ÷ 2 = 963 211 070 + 0;
  • 963 211 070 ÷ 2 = 481 605 535 + 0;
  • 481 605 535 ÷ 2 = 240 802 767 + 1;
  • 240 802 767 ÷ 2 = 120 401 383 + 1;
  • 120 401 383 ÷ 2 = 60 200 691 + 1;
  • 60 200 691 ÷ 2 = 30 100 345 + 1;
  • 30 100 345 ÷ 2 = 15 050 172 + 1;
  • 15 050 172 ÷ 2 = 7 525 086 + 0;
  • 7 525 086 ÷ 2 = 3 762 543 + 0;
  • 3 762 543 ÷ 2 = 1 881 271 + 1;
  • 1 881 271 ÷ 2 = 940 635 + 1;
  • 940 635 ÷ 2 = 470 317 + 1;
  • 470 317 ÷ 2 = 235 158 + 1;
  • 235 158 ÷ 2 = 117 579 + 0;
  • 117 579 ÷ 2 = 58 789 + 1;
  • 58 789 ÷ 2 = 29 394 + 1;
  • 29 394 ÷ 2 = 14 697 + 0;
  • 14 697 ÷ 2 = 7 348 + 1;
  • 7 348 ÷ 2 = 3 674 + 0;
  • 3 674 ÷ 2 = 1 837 + 0;
  • 1 837 ÷ 2 = 918 + 1;
  • 918 ÷ 2 = 459 + 0;
  • 459 ÷ 2 = 229 + 1;
  • 229 ÷ 2 = 114 + 1;
  • 114 ÷ 2 = 57 + 0;
  • 57 ÷ 2 = 28 + 1;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


1 010 000 011 111 077(10) =


11 1001 0110 1001 0110 1111 0011 1110 0010 1010 1010 1010 0101(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 49 positions to the left, so that only one non zero digit remains to the left of it:


1 010 000 011 111 077(10) =


11 1001 0110 1001 0110 1111 0011 1110 0010 1010 1010 1010 0101(2) =


11 1001 0110 1001 0110 1111 0011 1110 0010 1010 1010 1010 0101(2) × 20 =


1.1100 1011 0100 1011 0111 1001 1111 0001 0101 0101 0101 0010 1(2) × 249


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 49


Mantissa (not normalized):
1.1100 1011 0100 1011 0111 1001 1111 0001 0101 0101 0101 0010 1


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


49 + 2(8-1) - 1 =


(49 + 127)(10) =


176(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 176 ÷ 2 = 88 + 0;
  • 88 ÷ 2 = 44 + 0;
  • 44 ÷ 2 = 22 + 0;
  • 22 ÷ 2 = 11 + 0;
  • 11 ÷ 2 = 5 + 1;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


176(10) =


1011 0000(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 110 0101 1010 0101 1011 1100 11 1110 0010 1010 1010 1010 0101 =


110 0101 1010 0101 1011 1100


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1011 0000


Mantissa (23 bits) =
110 0101 1010 0101 1011 1100


The base ten decimal number 1 010 000 011 111 077 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1011 0000 - 110 0101 1010 0101 1011 1100

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111