Convert 1 000 110 110 109 999 999 999 999 999 977 to 32 Bit Single Precision IEEE 754 Binary Floating Point Standard, From a Base 10 Decimal Number

1 000 110 110 109 999 999 999 999 999 977(10) to 32 bit single precision IEEE 754 binary floating point (1 bit for sign, 8 bits for exponent, 23 bits for mantissa) = ?

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 1 000 110 110 109 999 999 999 999 999 977 ÷ 2 = 500 055 055 054 999 999 999 999 999 988 + 1;
  • 500 055 055 054 999 999 999 999 999 988 ÷ 2 = 250 027 527 527 499 999 999 999 999 994 + 0;
  • 250 027 527 527 499 999 999 999 999 994 ÷ 2 = 125 013 763 763 749 999 999 999 999 997 + 0;
  • 125 013 763 763 749 999 999 999 999 997 ÷ 2 = 62 506 881 881 874 999 999 999 999 998 + 1;
  • 62 506 881 881 874 999 999 999 999 998 ÷ 2 = 31 253 440 940 937 499 999 999 999 999 + 0;
  • 31 253 440 940 937 499 999 999 999 999 ÷ 2 = 15 626 720 470 468 749 999 999 999 999 + 1;
  • 15 626 720 470 468 749 999 999 999 999 ÷ 2 = 7 813 360 235 234 374 999 999 999 999 + 1;
  • 7 813 360 235 234 374 999 999 999 999 ÷ 2 = 3 906 680 117 617 187 499 999 999 999 + 1;
  • 3 906 680 117 617 187 499 999 999 999 ÷ 2 = 1 953 340 058 808 593 749 999 999 999 + 1;
  • 1 953 340 058 808 593 749 999 999 999 ÷ 2 = 976 670 029 404 296 874 999 999 999 + 1;
  • 976 670 029 404 296 874 999 999 999 ÷ 2 = 488 335 014 702 148 437 499 999 999 + 1;
  • 488 335 014 702 148 437 499 999 999 ÷ 2 = 244 167 507 351 074 218 749 999 999 + 1;
  • 244 167 507 351 074 218 749 999 999 ÷ 2 = 122 083 753 675 537 109 374 999 999 + 1;
  • 122 083 753 675 537 109 374 999 999 ÷ 2 = 61 041 876 837 768 554 687 499 999 + 1;
  • 61 041 876 837 768 554 687 499 999 ÷ 2 = 30 520 938 418 884 277 343 749 999 + 1;
  • 30 520 938 418 884 277 343 749 999 ÷ 2 = 15 260 469 209 442 138 671 874 999 + 1;
  • 15 260 469 209 442 138 671 874 999 ÷ 2 = 7 630 234 604 721 069 335 937 499 + 1;
  • 7 630 234 604 721 069 335 937 499 ÷ 2 = 3 815 117 302 360 534 667 968 749 + 1;
  • 3 815 117 302 360 534 667 968 749 ÷ 2 = 1 907 558 651 180 267 333 984 374 + 1;
  • 1 907 558 651 180 267 333 984 374 ÷ 2 = 953 779 325 590 133 666 992 187 + 0;
  • 953 779 325 590 133 666 992 187 ÷ 2 = 476 889 662 795 066 833 496 093 + 1;
  • 476 889 662 795 066 833 496 093 ÷ 2 = 238 444 831 397 533 416 748 046 + 1;
  • 238 444 831 397 533 416 748 046 ÷ 2 = 119 222 415 698 766 708 374 023 + 0;
  • 119 222 415 698 766 708 374 023 ÷ 2 = 59 611 207 849 383 354 187 011 + 1;
  • 59 611 207 849 383 354 187 011 ÷ 2 = 29 805 603 924 691 677 093 505 + 1;
  • 29 805 603 924 691 677 093 505 ÷ 2 = 14 902 801 962 345 838 546 752 + 1;
  • 14 902 801 962 345 838 546 752 ÷ 2 = 7 451 400 981 172 919 273 376 + 0;
  • 7 451 400 981 172 919 273 376 ÷ 2 = 3 725 700 490 586 459 636 688 + 0;
  • 3 725 700 490 586 459 636 688 ÷ 2 = 1 862 850 245 293 229 818 344 + 0;
  • 1 862 850 245 293 229 818 344 ÷ 2 = 931 425 122 646 614 909 172 + 0;
  • 931 425 122 646 614 909 172 ÷ 2 = 465 712 561 323 307 454 586 + 0;
  • 465 712 561 323 307 454 586 ÷ 2 = 232 856 280 661 653 727 293 + 0;
  • 232 856 280 661 653 727 293 ÷ 2 = 116 428 140 330 826 863 646 + 1;
  • 116 428 140 330 826 863 646 ÷ 2 = 58 214 070 165 413 431 823 + 0;
  • 58 214 070 165 413 431 823 ÷ 2 = 29 107 035 082 706 715 911 + 1;
  • 29 107 035 082 706 715 911 ÷ 2 = 14 553 517 541 353 357 955 + 1;
  • 14 553 517 541 353 357 955 ÷ 2 = 7 276 758 770 676 678 977 + 1;
  • 7 276 758 770 676 678 977 ÷ 2 = 3 638 379 385 338 339 488 + 1;
  • 3 638 379 385 338 339 488 ÷ 2 = 1 819 189 692 669 169 744 + 0;
  • 1 819 189 692 669 169 744 ÷ 2 = 909 594 846 334 584 872 + 0;
  • 909 594 846 334 584 872 ÷ 2 = 454 797 423 167 292 436 + 0;
  • 454 797 423 167 292 436 ÷ 2 = 227 398 711 583 646 218 + 0;
  • 227 398 711 583 646 218 ÷ 2 = 113 699 355 791 823 109 + 0;
  • 113 699 355 791 823 109 ÷ 2 = 56 849 677 895 911 554 + 1;
  • 56 849 677 895 911 554 ÷ 2 = 28 424 838 947 955 777 + 0;
  • 28 424 838 947 955 777 ÷ 2 = 14 212 419 473 977 888 + 1;
  • 14 212 419 473 977 888 ÷ 2 = 7 106 209 736 988 944 + 0;
  • 7 106 209 736 988 944 ÷ 2 = 3 553 104 868 494 472 + 0;
  • 3 553 104 868 494 472 ÷ 2 = 1 776 552 434 247 236 + 0;
  • 1 776 552 434 247 236 ÷ 2 = 888 276 217 123 618 + 0;
  • 888 276 217 123 618 ÷ 2 = 444 138 108 561 809 + 0;
  • 444 138 108 561 809 ÷ 2 = 222 069 054 280 904 + 1;
  • 222 069 054 280 904 ÷ 2 = 111 034 527 140 452 + 0;
  • 111 034 527 140 452 ÷ 2 = 55 517 263 570 226 + 0;
  • 55 517 263 570 226 ÷ 2 = 27 758 631 785 113 + 0;
  • 27 758 631 785 113 ÷ 2 = 13 879 315 892 556 + 1;
  • 13 879 315 892 556 ÷ 2 = 6 939 657 946 278 + 0;
  • 6 939 657 946 278 ÷ 2 = 3 469 828 973 139 + 0;
  • 3 469 828 973 139 ÷ 2 = 1 734 914 486 569 + 1;
  • 1 734 914 486 569 ÷ 2 = 867 457 243 284 + 1;
  • 867 457 243 284 ÷ 2 = 433 728 621 642 + 0;
  • 433 728 621 642 ÷ 2 = 216 864 310 821 + 0;
  • 216 864 310 821 ÷ 2 = 108 432 155 410 + 1;
  • 108 432 155 410 ÷ 2 = 54 216 077 705 + 0;
  • 54 216 077 705 ÷ 2 = 27 108 038 852 + 1;
  • 27 108 038 852 ÷ 2 = 13 554 019 426 + 0;
  • 13 554 019 426 ÷ 2 = 6 777 009 713 + 0;
  • 6 777 009 713 ÷ 2 = 3 388 504 856 + 1;
  • 3 388 504 856 ÷ 2 = 1 694 252 428 + 0;
  • 1 694 252 428 ÷ 2 = 847 126 214 + 0;
  • 847 126 214 ÷ 2 = 423 563 107 + 0;
  • 423 563 107 ÷ 2 = 211 781 553 + 1;
  • 211 781 553 ÷ 2 = 105 890 776 + 1;
  • 105 890 776 ÷ 2 = 52 945 388 + 0;
  • 52 945 388 ÷ 2 = 26 472 694 + 0;
  • 26 472 694 ÷ 2 = 13 236 347 + 0;
  • 13 236 347 ÷ 2 = 6 618 173 + 1;
  • 6 618 173 ÷ 2 = 3 309 086 + 1;
  • 3 309 086 ÷ 2 = 1 654 543 + 0;
  • 1 654 543 ÷ 2 = 827 271 + 1;
  • 827 271 ÷ 2 = 413 635 + 1;
  • 413 635 ÷ 2 = 206 817 + 1;
  • 206 817 ÷ 2 = 103 408 + 1;
  • 103 408 ÷ 2 = 51 704 + 0;
  • 51 704 ÷ 2 = 25 852 + 0;
  • 25 852 ÷ 2 = 12 926 + 0;
  • 12 926 ÷ 2 = 6 463 + 0;
  • 6 463 ÷ 2 = 3 231 + 1;
  • 3 231 ÷ 2 = 1 615 + 1;
  • 1 615 ÷ 2 = 807 + 1;
  • 807 ÷ 2 = 403 + 1;
  • 403 ÷ 2 = 201 + 1;
  • 201 ÷ 2 = 100 + 1;
  • 100 ÷ 2 = 50 + 0;
  • 50 ÷ 2 = 25 + 0;
  • 25 ÷ 2 = 12 + 1;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


1 000 110 110 109 999 999 999 999 999 977(10) =


1100 1001 1111 1000 0111 1011 0001 1000 1001 0100 1100 1000 1000 0010 1000 0011 1101 0000 0011 1011 0111 1111 1111 1110 1001(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 99 positions to the left so that only one non zero digit remains to the left of it:


1 000 110 110 109 999 999 999 999 999 977(10) =


1100 1001 1111 1000 0111 1011 0001 1000 1001 0100 1100 1000 1000 0010 1000 0011 1101 0000 0011 1011 0111 1111 1111 1110 1001(2) =


1100 1001 1111 1000 0111 1011 0001 1000 1001 0100 1100 1000 1000 0010 1000 0011 1101 0000 0011 1011 0111 1111 1111 1110 1001(2) × 20 =


1.1001 0011 1111 0000 1111 0110 0011 0001 0010 1001 1001 0001 0000 0101 0000 0111 1010 0000 0111 0110 1111 1111 1111 1101 001(2) × 299


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign: 0 (a positive number)


Exponent (unadjusted): 99


Mantissa (not normalized):
1.1001 0011 1111 0000 1111 0110 0011 0001 0010 1001 1001 0001 0000 0101 0000 0111 1010 0000 0111 0110 1111 1111 1111 1101 001


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


99 + 2(8-1) - 1 =


(99 + 127)(10) =


226(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 226 ÷ 2 = 113 + 0;
  • 113 ÷ 2 = 56 + 1;
  • 56 ÷ 2 = 28 + 0;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above:


Exponent (adjusted) =


226(10) =


1110 0010(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 100 1001 1111 1000 0111 1011 0001 1000 1001 0100 1100 1000 1000 0010 1000 0011 1101 0000 0011 1011 0111 1111 1111 1110 1001 =


100 1001 1111 1000 0111 1011


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1110 0010


Mantissa (23 bits) =
100 1001 1111 1000 0111 1011


Number 1 000 110 110 109 999 999 999 999 999 977 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point:
0 - 1110 0010 - 100 1001 1111 1000 0111 1011

(32 bits IEEE 754)

More operations of this kind:

1 000 110 110 109 999 999 999 999 999 976 = ? ... 1 000 110 110 109 999 999 999 999 999 978 = ?


Convert to 32 bit single precision IEEE 754 binary floating point standard

A number in 32 bit single precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (8 bits) and mantissa (23 bits)

Latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

1 000 110 110 109 999 999 999 999 999 977 to 32 bit single precision IEEE 754 binary floating point = ? Mar 24 09:06 UTC (GMT)
1 011 110 000 999 999 999 999 999 999 993 to 32 bit single precision IEEE 754 binary floating point = ? Mar 24 09:06 UTC (GMT)
603 212 to 32 bit single precision IEEE 754 binary floating point = ? Mar 24 09:06 UTC (GMT)
271.2 to 32 bit single precision IEEE 754 binary floating point = ? Mar 24 09:06 UTC (GMT)
16 000 to 32 bit single precision IEEE 754 binary floating point = ? Mar 24 09:06 UTC (GMT)
2 464 477 979 to 32 bit single precision IEEE 754 binary floating point = ? Mar 24 09:06 UTC (GMT)
914 184 to 32 bit single precision IEEE 754 binary floating point = ? Mar 24 09:05 UTC (GMT)
1.027 450 980 5 to 32 bit single precision IEEE 754 binary floating point = ? Mar 24 09:05 UTC (GMT)
0.075 1 to 32 bit single precision IEEE 754 binary floating point = ? Mar 24 09:05 UTC (GMT)
-1 011 to 32 bit single precision IEEE 754 binary floating point = ? Mar 24 09:05 UTC (GMT)
1 278.9 to 32 bit single precision IEEE 754 binary floating point = ? Mar 24 09:05 UTC (GMT)
192 305 to 32 bit single precision IEEE 754 binary floating point = ? Mar 24 09:05 UTC (GMT)
0.095 963 to 32 bit single precision IEEE 754 binary floating point = ? Mar 24 09:05 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =


    1 - 1000 0011 - 100 1010 1100 0110 1010 0111