Decimal to 32 Bit IEEE 754 Binary: Convert Number 1 000 011 100 010 000 101 000 100 099 968 to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From Base Ten Decimal System

Number 1 000 011 100 010 000 101 000 100 099 968(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation standard (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 1 000 011 100 010 000 101 000 100 099 968 ÷ 2 = 500 005 550 005 000 050 500 050 049 984 + 0;
  • 500 005 550 005 000 050 500 050 049 984 ÷ 2 = 250 002 775 002 500 025 250 025 024 992 + 0;
  • 250 002 775 002 500 025 250 025 024 992 ÷ 2 = 125 001 387 501 250 012 625 012 512 496 + 0;
  • 125 001 387 501 250 012 625 012 512 496 ÷ 2 = 62 500 693 750 625 006 312 506 256 248 + 0;
  • 62 500 693 750 625 006 312 506 256 248 ÷ 2 = 31 250 346 875 312 503 156 253 128 124 + 0;
  • 31 250 346 875 312 503 156 253 128 124 ÷ 2 = 15 625 173 437 656 251 578 126 564 062 + 0;
  • 15 625 173 437 656 251 578 126 564 062 ÷ 2 = 7 812 586 718 828 125 789 063 282 031 + 0;
  • 7 812 586 718 828 125 789 063 282 031 ÷ 2 = 3 906 293 359 414 062 894 531 641 015 + 1;
  • 3 906 293 359 414 062 894 531 641 015 ÷ 2 = 1 953 146 679 707 031 447 265 820 507 + 1;
  • 1 953 146 679 707 031 447 265 820 507 ÷ 2 = 976 573 339 853 515 723 632 910 253 + 1;
  • 976 573 339 853 515 723 632 910 253 ÷ 2 = 488 286 669 926 757 861 816 455 126 + 1;
  • 488 286 669 926 757 861 816 455 126 ÷ 2 = 244 143 334 963 378 930 908 227 563 + 0;
  • 244 143 334 963 378 930 908 227 563 ÷ 2 = 122 071 667 481 689 465 454 113 781 + 1;
  • 122 071 667 481 689 465 454 113 781 ÷ 2 = 61 035 833 740 844 732 727 056 890 + 1;
  • 61 035 833 740 844 732 727 056 890 ÷ 2 = 30 517 916 870 422 366 363 528 445 + 0;
  • 30 517 916 870 422 366 363 528 445 ÷ 2 = 15 258 958 435 211 183 181 764 222 + 1;
  • 15 258 958 435 211 183 181 764 222 ÷ 2 = 7 629 479 217 605 591 590 882 111 + 0;
  • 7 629 479 217 605 591 590 882 111 ÷ 2 = 3 814 739 608 802 795 795 441 055 + 1;
  • 3 814 739 608 802 795 795 441 055 ÷ 2 = 1 907 369 804 401 397 897 720 527 + 1;
  • 1 907 369 804 401 397 897 720 527 ÷ 2 = 953 684 902 200 698 948 860 263 + 1;
  • 953 684 902 200 698 948 860 263 ÷ 2 = 476 842 451 100 349 474 430 131 + 1;
  • 476 842 451 100 349 474 430 131 ÷ 2 = 238 421 225 550 174 737 215 065 + 1;
  • 238 421 225 550 174 737 215 065 ÷ 2 = 119 210 612 775 087 368 607 532 + 1;
  • 119 210 612 775 087 368 607 532 ÷ 2 = 59 605 306 387 543 684 303 766 + 0;
  • 59 605 306 387 543 684 303 766 ÷ 2 = 29 802 653 193 771 842 151 883 + 0;
  • 29 802 653 193 771 842 151 883 ÷ 2 = 14 901 326 596 885 921 075 941 + 1;
  • 14 901 326 596 885 921 075 941 ÷ 2 = 7 450 663 298 442 960 537 970 + 1;
  • 7 450 663 298 442 960 537 970 ÷ 2 = 3 725 331 649 221 480 268 985 + 0;
  • 3 725 331 649 221 480 268 985 ÷ 2 = 1 862 665 824 610 740 134 492 + 1;
  • 1 862 665 824 610 740 134 492 ÷ 2 = 931 332 912 305 370 067 246 + 0;
  • 931 332 912 305 370 067 246 ÷ 2 = 465 666 456 152 685 033 623 + 0;
  • 465 666 456 152 685 033 623 ÷ 2 = 232 833 228 076 342 516 811 + 1;
  • 232 833 228 076 342 516 811 ÷ 2 = 116 416 614 038 171 258 405 + 1;
  • 116 416 614 038 171 258 405 ÷ 2 = 58 208 307 019 085 629 202 + 1;
  • 58 208 307 019 085 629 202 ÷ 2 = 29 104 153 509 542 814 601 + 0;
  • 29 104 153 509 542 814 601 ÷ 2 = 14 552 076 754 771 407 300 + 1;
  • 14 552 076 754 771 407 300 ÷ 2 = 7 276 038 377 385 703 650 + 0;
  • 7 276 038 377 385 703 650 ÷ 2 = 3 638 019 188 692 851 825 + 0;
  • 3 638 019 188 692 851 825 ÷ 2 = 1 819 009 594 346 425 912 + 1;
  • 1 819 009 594 346 425 912 ÷ 2 = 909 504 797 173 212 956 + 0;
  • 909 504 797 173 212 956 ÷ 2 = 454 752 398 586 606 478 + 0;
  • 454 752 398 586 606 478 ÷ 2 = 227 376 199 293 303 239 + 0;
  • 227 376 199 293 303 239 ÷ 2 = 113 688 099 646 651 619 + 1;
  • 113 688 099 646 651 619 ÷ 2 = 56 844 049 823 325 809 + 1;
  • 56 844 049 823 325 809 ÷ 2 = 28 422 024 911 662 904 + 1;
  • 28 422 024 911 662 904 ÷ 2 = 14 211 012 455 831 452 + 0;
  • 14 211 012 455 831 452 ÷ 2 = 7 105 506 227 915 726 + 0;
  • 7 105 506 227 915 726 ÷ 2 = 3 552 753 113 957 863 + 0;
  • 3 552 753 113 957 863 ÷ 2 = 1 776 376 556 978 931 + 1;
  • 1 776 376 556 978 931 ÷ 2 = 888 188 278 489 465 + 1;
  • 888 188 278 489 465 ÷ 2 = 444 094 139 244 732 + 1;
  • 444 094 139 244 732 ÷ 2 = 222 047 069 622 366 + 0;
  • 222 047 069 622 366 ÷ 2 = 111 023 534 811 183 + 0;
  • 111 023 534 811 183 ÷ 2 = 55 511 767 405 591 + 1;
  • 55 511 767 405 591 ÷ 2 = 27 755 883 702 795 + 1;
  • 27 755 883 702 795 ÷ 2 = 13 877 941 851 397 + 1;
  • 13 877 941 851 397 ÷ 2 = 6 938 970 925 698 + 1;
  • 6 938 970 925 698 ÷ 2 = 3 469 485 462 849 + 0;
  • 3 469 485 462 849 ÷ 2 = 1 734 742 731 424 + 1;
  • 1 734 742 731 424 ÷ 2 = 867 371 365 712 + 0;
  • 867 371 365 712 ÷ 2 = 433 685 682 856 + 0;
  • 433 685 682 856 ÷ 2 = 216 842 841 428 + 0;
  • 216 842 841 428 ÷ 2 = 108 421 420 714 + 0;
  • 108 421 420 714 ÷ 2 = 54 210 710 357 + 0;
  • 54 210 710 357 ÷ 2 = 27 105 355 178 + 1;
  • 27 105 355 178 ÷ 2 = 13 552 677 589 + 0;
  • 13 552 677 589 ÷ 2 = 6 776 338 794 + 1;
  • 6 776 338 794 ÷ 2 = 3 388 169 397 + 0;
  • 3 388 169 397 ÷ 2 = 1 694 084 698 + 1;
  • 1 694 084 698 ÷ 2 = 847 042 349 + 0;
  • 847 042 349 ÷ 2 = 423 521 174 + 1;
  • 423 521 174 ÷ 2 = 211 760 587 + 0;
  • 211 760 587 ÷ 2 = 105 880 293 + 1;
  • 105 880 293 ÷ 2 = 52 940 146 + 1;
  • 52 940 146 ÷ 2 = 26 470 073 + 0;
  • 26 470 073 ÷ 2 = 13 235 036 + 1;
  • 13 235 036 ÷ 2 = 6 617 518 + 0;
  • 6 617 518 ÷ 2 = 3 308 759 + 0;
  • 3 308 759 ÷ 2 = 1 654 379 + 1;
  • 1 654 379 ÷ 2 = 827 189 + 1;
  • 827 189 ÷ 2 = 413 594 + 1;
  • 413 594 ÷ 2 = 206 797 + 0;
  • 206 797 ÷ 2 = 103 398 + 1;
  • 103 398 ÷ 2 = 51 699 + 0;
  • 51 699 ÷ 2 = 25 849 + 1;
  • 25 849 ÷ 2 = 12 924 + 1;
  • 12 924 ÷ 2 = 6 462 + 0;
  • 6 462 ÷ 2 = 3 231 + 0;
  • 3 231 ÷ 2 = 1 615 + 1;
  • 1 615 ÷ 2 = 807 + 1;
  • 807 ÷ 2 = 403 + 1;
  • 403 ÷ 2 = 201 + 1;
  • 201 ÷ 2 = 100 + 1;
  • 100 ÷ 2 = 50 + 0;
  • 50 ÷ 2 = 25 + 0;
  • 25 ÷ 2 = 12 + 1;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.

1 000 011 100 010 000 101 000 100 099 968(10) =


1100 1001 1111 0011 0101 1100 1011 0101 0101 0000 0101 1110 0111 0001 1100 0100 1011 1001 0110 0111 1110 1011 0111 1000 0000(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 99 positions to the left, so that only one non zero digit remains to the left of it:


1 000 011 100 010 000 101 000 100 099 968(10) =


1100 1001 1111 0011 0101 1100 1011 0101 0101 0000 0101 1110 0111 0001 1100 0100 1011 1001 0110 0111 1110 1011 0111 1000 0000(2) =


1100 1001 1111 0011 0101 1100 1011 0101 0101 0000 0101 1110 0111 0001 1100 0100 1011 1001 0110 0111 1110 1011 0111 1000 0000(2) × 20 =


1.1001 0011 1110 0110 1011 1001 0110 1010 1010 0000 1011 1100 1110 0011 1000 1001 0111 0010 1100 1111 1101 0110 1111 0000 000(2) × 299


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 99


Mantissa (not normalized):
1.1001 0011 1110 0110 1011 1001 0110 1010 1010 0000 1011 1100 1110 0011 1000 1001 0111 0010 1100 1111 1101 0110 1111 0000 000


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


99 + 2(8-1) - 1 =


(99 + 127)(10) =


226(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 226 ÷ 2 = 113 + 0;
  • 113 ÷ 2 = 56 + 1;
  • 56 ÷ 2 = 28 + 0;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


226(10) =


1110 0010(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 100 1001 1111 0011 0101 1100 1011 0101 0101 0000 0101 1110 0111 0001 1100 0100 1011 1001 0110 0111 1110 1011 0111 1000 0000 =


100 1001 1111 0011 0101 1100


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1110 0010


Mantissa (23 bits) =
100 1001 1111 0011 0101 1100


The base ten decimal number 1 000 011 100 010 000 101 000 100 099 968 converted and written in 32 bit single precision IEEE 754 binary floating point representation:

0 - 1110 0010 - 100 1001 1111 0011 0101 1100

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111