Decimal to 32 Bit IEEE 754 Binary: Convert Number 1 000 000 010 099 999 999 999 999 999 935 to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From Base Ten Decimal System

Number 1 000 000 010 099 999 999 999 999 999 935(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation standard (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 1 000 000 010 099 999 999 999 999 999 935 ÷ 2 = 500 000 005 049 999 999 999 999 999 967 + 1;
  • 500 000 005 049 999 999 999 999 999 967 ÷ 2 = 250 000 002 524 999 999 999 999 999 983 + 1;
  • 250 000 002 524 999 999 999 999 999 983 ÷ 2 = 125 000 001 262 499 999 999 999 999 991 + 1;
  • 125 000 001 262 499 999 999 999 999 991 ÷ 2 = 62 500 000 631 249 999 999 999 999 995 + 1;
  • 62 500 000 631 249 999 999 999 999 995 ÷ 2 = 31 250 000 315 624 999 999 999 999 997 + 1;
  • 31 250 000 315 624 999 999 999 999 997 ÷ 2 = 15 625 000 157 812 499 999 999 999 998 + 1;
  • 15 625 000 157 812 499 999 999 999 998 ÷ 2 = 7 812 500 078 906 249 999 999 999 999 + 0;
  • 7 812 500 078 906 249 999 999 999 999 ÷ 2 = 3 906 250 039 453 124 999 999 999 999 + 1;
  • 3 906 250 039 453 124 999 999 999 999 ÷ 2 = 1 953 125 019 726 562 499 999 999 999 + 1;
  • 1 953 125 019 726 562 499 999 999 999 ÷ 2 = 976 562 509 863 281 249 999 999 999 + 1;
  • 976 562 509 863 281 249 999 999 999 ÷ 2 = 488 281 254 931 640 624 999 999 999 + 1;
  • 488 281 254 931 640 624 999 999 999 ÷ 2 = 244 140 627 465 820 312 499 999 999 + 1;
  • 244 140 627 465 820 312 499 999 999 ÷ 2 = 122 070 313 732 910 156 249 999 999 + 1;
  • 122 070 313 732 910 156 249 999 999 ÷ 2 = 61 035 156 866 455 078 124 999 999 + 1;
  • 61 035 156 866 455 078 124 999 999 ÷ 2 = 30 517 578 433 227 539 062 499 999 + 1;
  • 30 517 578 433 227 539 062 499 999 ÷ 2 = 15 258 789 216 613 769 531 249 999 + 1;
  • 15 258 789 216 613 769 531 249 999 ÷ 2 = 7 629 394 608 306 884 765 624 999 + 1;
  • 7 629 394 608 306 884 765 624 999 ÷ 2 = 3 814 697 304 153 442 382 812 499 + 1;
  • 3 814 697 304 153 442 382 812 499 ÷ 2 = 1 907 348 652 076 721 191 406 249 + 1;
  • 1 907 348 652 076 721 191 406 249 ÷ 2 = 953 674 326 038 360 595 703 124 + 1;
  • 953 674 326 038 360 595 703 124 ÷ 2 = 476 837 163 019 180 297 851 562 + 0;
  • 476 837 163 019 180 297 851 562 ÷ 2 = 238 418 581 509 590 148 925 781 + 0;
  • 238 418 581 509 590 148 925 781 ÷ 2 = 119 209 290 754 795 074 462 890 + 1;
  • 119 209 290 754 795 074 462 890 ÷ 2 = 59 604 645 377 397 537 231 445 + 0;
  • 59 604 645 377 397 537 231 445 ÷ 2 = 29 802 322 688 698 768 615 722 + 1;
  • 29 802 322 688 698 768 615 722 ÷ 2 = 14 901 161 344 349 384 307 861 + 0;
  • 14 901 161 344 349 384 307 861 ÷ 2 = 7 450 580 672 174 692 153 930 + 1;
  • 7 450 580 672 174 692 153 930 ÷ 2 = 3 725 290 336 087 346 076 965 + 0;
  • 3 725 290 336 087 346 076 965 ÷ 2 = 1 862 645 168 043 673 038 482 + 1;
  • 1 862 645 168 043 673 038 482 ÷ 2 = 931 322 584 021 836 519 241 + 0;
  • 931 322 584 021 836 519 241 ÷ 2 = 465 661 292 010 918 259 620 + 1;
  • 465 661 292 010 918 259 620 ÷ 2 = 232 830 646 005 459 129 810 + 0;
  • 232 830 646 005 459 129 810 ÷ 2 = 116 415 323 002 729 564 905 + 0;
  • 116 415 323 002 729 564 905 ÷ 2 = 58 207 661 501 364 782 452 + 1;
  • 58 207 661 501 364 782 452 ÷ 2 = 29 103 830 750 682 391 226 + 0;
  • 29 103 830 750 682 391 226 ÷ 2 = 14 551 915 375 341 195 613 + 0;
  • 14 551 915 375 341 195 613 ÷ 2 = 7 275 957 687 670 597 806 + 1;
  • 7 275 957 687 670 597 806 ÷ 2 = 3 637 978 843 835 298 903 + 0;
  • 3 637 978 843 835 298 903 ÷ 2 = 1 818 989 421 917 649 451 + 1;
  • 1 818 989 421 917 649 451 ÷ 2 = 909 494 710 958 824 725 + 1;
  • 909 494 710 958 824 725 ÷ 2 = 454 747 355 479 412 362 + 1;
  • 454 747 355 479 412 362 ÷ 2 = 227 373 677 739 706 181 + 0;
  • 227 373 677 739 706 181 ÷ 2 = 113 686 838 869 853 090 + 1;
  • 113 686 838 869 853 090 ÷ 2 = 56 843 419 434 926 545 + 0;
  • 56 843 419 434 926 545 ÷ 2 = 28 421 709 717 463 272 + 1;
  • 28 421 709 717 463 272 ÷ 2 = 14 210 854 858 731 636 + 0;
  • 14 210 854 858 731 636 ÷ 2 = 7 105 427 429 365 818 + 0;
  • 7 105 427 429 365 818 ÷ 2 = 3 552 713 714 682 909 + 0;
  • 3 552 713 714 682 909 ÷ 2 = 1 776 356 857 341 454 + 1;
  • 1 776 356 857 341 454 ÷ 2 = 888 178 428 670 727 + 0;
  • 888 178 428 670 727 ÷ 2 = 444 089 214 335 363 + 1;
  • 444 089 214 335 363 ÷ 2 = 222 044 607 167 681 + 1;
  • 222 044 607 167 681 ÷ 2 = 111 022 303 583 840 + 1;
  • 111 022 303 583 840 ÷ 2 = 55 511 151 791 920 + 0;
  • 55 511 151 791 920 ÷ 2 = 27 755 575 895 960 + 0;
  • 27 755 575 895 960 ÷ 2 = 13 877 787 947 980 + 0;
  • 13 877 787 947 980 ÷ 2 = 6 938 893 973 990 + 0;
  • 6 938 893 973 990 ÷ 2 = 3 469 446 986 995 + 0;
  • 3 469 446 986 995 ÷ 2 = 1 734 723 493 497 + 1;
  • 1 734 723 493 497 ÷ 2 = 867 361 746 748 + 1;
  • 867 361 746 748 ÷ 2 = 433 680 873 374 + 0;
  • 433 680 873 374 ÷ 2 = 216 840 436 687 + 0;
  • 216 840 436 687 ÷ 2 = 108 420 218 343 + 1;
  • 108 420 218 343 ÷ 2 = 54 210 109 171 + 1;
  • 54 210 109 171 ÷ 2 = 27 105 054 585 + 1;
  • 27 105 054 585 ÷ 2 = 13 552 527 292 + 1;
  • 13 552 527 292 ÷ 2 = 6 776 263 646 + 0;
  • 6 776 263 646 ÷ 2 = 3 388 131 823 + 0;
  • 3 388 131 823 ÷ 2 = 1 694 065 911 + 1;
  • 1 694 065 911 ÷ 2 = 847 032 955 + 1;
  • 847 032 955 ÷ 2 = 423 516 477 + 1;
  • 423 516 477 ÷ 2 = 211 758 238 + 1;
  • 211 758 238 ÷ 2 = 105 879 119 + 0;
  • 105 879 119 ÷ 2 = 52 939 559 + 1;
  • 52 939 559 ÷ 2 = 26 469 779 + 1;
  • 26 469 779 ÷ 2 = 13 234 889 + 1;
  • 13 234 889 ÷ 2 = 6 617 444 + 1;
  • 6 617 444 ÷ 2 = 3 308 722 + 0;
  • 3 308 722 ÷ 2 = 1 654 361 + 0;
  • 1 654 361 ÷ 2 = 827 180 + 1;
  • 827 180 ÷ 2 = 413 590 + 0;
  • 413 590 ÷ 2 = 206 795 + 0;
  • 206 795 ÷ 2 = 103 397 + 1;
  • 103 397 ÷ 2 = 51 698 + 1;
  • 51 698 ÷ 2 = 25 849 + 0;
  • 25 849 ÷ 2 = 12 924 + 1;
  • 12 924 ÷ 2 = 6 462 + 0;
  • 6 462 ÷ 2 = 3 231 + 0;
  • 3 231 ÷ 2 = 1 615 + 1;
  • 1 615 ÷ 2 = 807 + 1;
  • 807 ÷ 2 = 403 + 1;
  • 403 ÷ 2 = 201 + 1;
  • 201 ÷ 2 = 100 + 1;
  • 100 ÷ 2 = 50 + 0;
  • 50 ÷ 2 = 25 + 0;
  • 25 ÷ 2 = 12 + 1;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.

1 000 000 010 099 999 999 999 999 999 935(10) =


1100 1001 1111 0010 1100 1001 1110 1111 0011 1100 1100 0001 1101 0001 0101 1101 0010 0101 0101 0100 1111 1111 1111 1011 1111(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 99 positions to the left, so that only one non zero digit remains to the left of it:


1 000 000 010 099 999 999 999 999 999 935(10) =


1100 1001 1111 0010 1100 1001 1110 1111 0011 1100 1100 0001 1101 0001 0101 1101 0010 0101 0101 0100 1111 1111 1111 1011 1111(2) =


1100 1001 1111 0010 1100 1001 1110 1111 0011 1100 1100 0001 1101 0001 0101 1101 0010 0101 0101 0100 1111 1111 1111 1011 1111(2) × 20 =


1.1001 0011 1110 0101 1001 0011 1101 1110 0111 1001 1000 0011 1010 0010 1011 1010 0100 1010 1010 1001 1111 1111 1111 0111 111(2) × 299


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 99


Mantissa (not normalized):
1.1001 0011 1110 0101 1001 0011 1101 1110 0111 1001 1000 0011 1010 0010 1011 1010 0100 1010 1010 1001 1111 1111 1111 0111 111


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


99 + 2(8-1) - 1 =


(99 + 127)(10) =


226(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 226 ÷ 2 = 113 + 0;
  • 113 ÷ 2 = 56 + 1;
  • 56 ÷ 2 = 28 + 0;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


226(10) =


1110 0010(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 100 1001 1111 0010 1100 1001 1110 1111 0011 1100 1100 0001 1101 0001 0101 1101 0010 0101 0101 0100 1111 1111 1111 1011 1111 =


100 1001 1111 0010 1100 1001


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1110 0010


Mantissa (23 bits) =
100 1001 1111 0010 1100 1001


The base ten decimal number 1 000 000 010 099 999 999 999 999 999 935 converted and written in 32 bit single precision IEEE 754 binary floating point representation:

0 - 1110 0010 - 100 1001 1111 0010 1100 1001

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111