32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 111 110 110 110 011 001 100 110 011 001 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 111 110 110 110 011 001 100 110 011 001(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 111 110 110 110 011 001 100 110 011 001 ÷ 2 = 55 555 055 055 005 500 550 055 005 500 + 1;
  • 55 555 055 055 005 500 550 055 005 500 ÷ 2 = 27 777 527 527 502 750 275 027 502 750 + 0;
  • 27 777 527 527 502 750 275 027 502 750 ÷ 2 = 13 888 763 763 751 375 137 513 751 375 + 0;
  • 13 888 763 763 751 375 137 513 751 375 ÷ 2 = 6 944 381 881 875 687 568 756 875 687 + 1;
  • 6 944 381 881 875 687 568 756 875 687 ÷ 2 = 3 472 190 940 937 843 784 378 437 843 + 1;
  • 3 472 190 940 937 843 784 378 437 843 ÷ 2 = 1 736 095 470 468 921 892 189 218 921 + 1;
  • 1 736 095 470 468 921 892 189 218 921 ÷ 2 = 868 047 735 234 460 946 094 609 460 + 1;
  • 868 047 735 234 460 946 094 609 460 ÷ 2 = 434 023 867 617 230 473 047 304 730 + 0;
  • 434 023 867 617 230 473 047 304 730 ÷ 2 = 217 011 933 808 615 236 523 652 365 + 0;
  • 217 011 933 808 615 236 523 652 365 ÷ 2 = 108 505 966 904 307 618 261 826 182 + 1;
  • 108 505 966 904 307 618 261 826 182 ÷ 2 = 54 252 983 452 153 809 130 913 091 + 0;
  • 54 252 983 452 153 809 130 913 091 ÷ 2 = 27 126 491 726 076 904 565 456 545 + 1;
  • 27 126 491 726 076 904 565 456 545 ÷ 2 = 13 563 245 863 038 452 282 728 272 + 1;
  • 13 563 245 863 038 452 282 728 272 ÷ 2 = 6 781 622 931 519 226 141 364 136 + 0;
  • 6 781 622 931 519 226 141 364 136 ÷ 2 = 3 390 811 465 759 613 070 682 068 + 0;
  • 3 390 811 465 759 613 070 682 068 ÷ 2 = 1 695 405 732 879 806 535 341 034 + 0;
  • 1 695 405 732 879 806 535 341 034 ÷ 2 = 847 702 866 439 903 267 670 517 + 0;
  • 847 702 866 439 903 267 670 517 ÷ 2 = 423 851 433 219 951 633 835 258 + 1;
  • 423 851 433 219 951 633 835 258 ÷ 2 = 211 925 716 609 975 816 917 629 + 0;
  • 211 925 716 609 975 816 917 629 ÷ 2 = 105 962 858 304 987 908 458 814 + 1;
  • 105 962 858 304 987 908 458 814 ÷ 2 = 52 981 429 152 493 954 229 407 + 0;
  • 52 981 429 152 493 954 229 407 ÷ 2 = 26 490 714 576 246 977 114 703 + 1;
  • 26 490 714 576 246 977 114 703 ÷ 2 = 13 245 357 288 123 488 557 351 + 1;
  • 13 245 357 288 123 488 557 351 ÷ 2 = 6 622 678 644 061 744 278 675 + 1;
  • 6 622 678 644 061 744 278 675 ÷ 2 = 3 311 339 322 030 872 139 337 + 1;
  • 3 311 339 322 030 872 139 337 ÷ 2 = 1 655 669 661 015 436 069 668 + 1;
  • 1 655 669 661 015 436 069 668 ÷ 2 = 827 834 830 507 718 034 834 + 0;
  • 827 834 830 507 718 034 834 ÷ 2 = 413 917 415 253 859 017 417 + 0;
  • 413 917 415 253 859 017 417 ÷ 2 = 206 958 707 626 929 508 708 + 1;
  • 206 958 707 626 929 508 708 ÷ 2 = 103 479 353 813 464 754 354 + 0;
  • 103 479 353 813 464 754 354 ÷ 2 = 51 739 676 906 732 377 177 + 0;
  • 51 739 676 906 732 377 177 ÷ 2 = 25 869 838 453 366 188 588 + 1;
  • 25 869 838 453 366 188 588 ÷ 2 = 12 934 919 226 683 094 294 + 0;
  • 12 934 919 226 683 094 294 ÷ 2 = 6 467 459 613 341 547 147 + 0;
  • 6 467 459 613 341 547 147 ÷ 2 = 3 233 729 806 670 773 573 + 1;
  • 3 233 729 806 670 773 573 ÷ 2 = 1 616 864 903 335 386 786 + 1;
  • 1 616 864 903 335 386 786 ÷ 2 = 808 432 451 667 693 393 + 0;
  • 808 432 451 667 693 393 ÷ 2 = 404 216 225 833 846 696 + 1;
  • 404 216 225 833 846 696 ÷ 2 = 202 108 112 916 923 348 + 0;
  • 202 108 112 916 923 348 ÷ 2 = 101 054 056 458 461 674 + 0;
  • 101 054 056 458 461 674 ÷ 2 = 50 527 028 229 230 837 + 0;
  • 50 527 028 229 230 837 ÷ 2 = 25 263 514 114 615 418 + 1;
  • 25 263 514 114 615 418 ÷ 2 = 12 631 757 057 307 709 + 0;
  • 12 631 757 057 307 709 ÷ 2 = 6 315 878 528 653 854 + 1;
  • 6 315 878 528 653 854 ÷ 2 = 3 157 939 264 326 927 + 0;
  • 3 157 939 264 326 927 ÷ 2 = 1 578 969 632 163 463 + 1;
  • 1 578 969 632 163 463 ÷ 2 = 789 484 816 081 731 + 1;
  • 789 484 816 081 731 ÷ 2 = 394 742 408 040 865 + 1;
  • 394 742 408 040 865 ÷ 2 = 197 371 204 020 432 + 1;
  • 197 371 204 020 432 ÷ 2 = 98 685 602 010 216 + 0;
  • 98 685 602 010 216 ÷ 2 = 49 342 801 005 108 + 0;
  • 49 342 801 005 108 ÷ 2 = 24 671 400 502 554 + 0;
  • 24 671 400 502 554 ÷ 2 = 12 335 700 251 277 + 0;
  • 12 335 700 251 277 ÷ 2 = 6 167 850 125 638 + 1;
  • 6 167 850 125 638 ÷ 2 = 3 083 925 062 819 + 0;
  • 3 083 925 062 819 ÷ 2 = 1 541 962 531 409 + 1;
  • 1 541 962 531 409 ÷ 2 = 770 981 265 704 + 1;
  • 770 981 265 704 ÷ 2 = 385 490 632 852 + 0;
  • 385 490 632 852 ÷ 2 = 192 745 316 426 + 0;
  • 192 745 316 426 ÷ 2 = 96 372 658 213 + 0;
  • 96 372 658 213 ÷ 2 = 48 186 329 106 + 1;
  • 48 186 329 106 ÷ 2 = 24 093 164 553 + 0;
  • 24 093 164 553 ÷ 2 = 12 046 582 276 + 1;
  • 12 046 582 276 ÷ 2 = 6 023 291 138 + 0;
  • 6 023 291 138 ÷ 2 = 3 011 645 569 + 0;
  • 3 011 645 569 ÷ 2 = 1 505 822 784 + 1;
  • 1 505 822 784 ÷ 2 = 752 911 392 + 0;
  • 752 911 392 ÷ 2 = 376 455 696 + 0;
  • 376 455 696 ÷ 2 = 188 227 848 + 0;
  • 188 227 848 ÷ 2 = 94 113 924 + 0;
  • 94 113 924 ÷ 2 = 47 056 962 + 0;
  • 47 056 962 ÷ 2 = 23 528 481 + 0;
  • 23 528 481 ÷ 2 = 11 764 240 + 1;
  • 11 764 240 ÷ 2 = 5 882 120 + 0;
  • 5 882 120 ÷ 2 = 2 941 060 + 0;
  • 2 941 060 ÷ 2 = 1 470 530 + 0;
  • 1 470 530 ÷ 2 = 735 265 + 0;
  • 735 265 ÷ 2 = 367 632 + 1;
  • 367 632 ÷ 2 = 183 816 + 0;
  • 183 816 ÷ 2 = 91 908 + 0;
  • 91 908 ÷ 2 = 45 954 + 0;
  • 45 954 ÷ 2 = 22 977 + 0;
  • 22 977 ÷ 2 = 11 488 + 1;
  • 11 488 ÷ 2 = 5 744 + 0;
  • 5 744 ÷ 2 = 2 872 + 0;
  • 2 872 ÷ 2 = 1 436 + 0;
  • 1 436 ÷ 2 = 718 + 0;
  • 718 ÷ 2 = 359 + 0;
  • 359 ÷ 2 = 179 + 1;
  • 179 ÷ 2 = 89 + 1;
  • 89 ÷ 2 = 44 + 1;
  • 44 ÷ 2 = 22 + 0;
  • 22 ÷ 2 = 11 + 0;
  • 11 ÷ 2 = 5 + 1;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


111 110 110 110 011 001 100 110 011 001(10) =


1 0110 0111 0000 0100 0010 0001 0000 0010 0101 0001 1010 0001 1110 1010 0010 1100 1001 0011 1110 1010 0001 1010 0111 1001(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 96 positions to the left, so that only one non zero digit remains to the left of it:


111 110 110 110 011 001 100 110 011 001(10) =


1 0110 0111 0000 0100 0010 0001 0000 0010 0101 0001 1010 0001 1110 1010 0010 1100 1001 0011 1110 1010 0001 1010 0111 1001(2) =


1 0110 0111 0000 0100 0010 0001 0000 0010 0101 0001 1010 0001 1110 1010 0010 1100 1001 0011 1110 1010 0001 1010 0111 1001(2) × 20 =


1.0110 0111 0000 0100 0010 0001 0000 0010 0101 0001 1010 0001 1110 1010 0010 1100 1001 0011 1110 1010 0001 1010 0111 1001(2) × 296


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 96


Mantissa (not normalized):
1.0110 0111 0000 0100 0010 0001 0000 0010 0101 0001 1010 0001 1110 1010 0010 1100 1001 0011 1110 1010 0001 1010 0111 1001


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


96 + 2(8-1) - 1 =


(96 + 127)(10) =


223(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 223 ÷ 2 = 111 + 1;
  • 111 ÷ 2 = 55 + 1;
  • 55 ÷ 2 = 27 + 1;
  • 27 ÷ 2 = 13 + 1;
  • 13 ÷ 2 = 6 + 1;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


223(10) =


1101 1111(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 011 0011 1000 0010 0001 0000 1 0000 0010 0101 0001 1010 0001 1110 1010 0010 1100 1001 0011 1110 1010 0001 1010 0111 1001 =


011 0011 1000 0010 0001 0000


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1101 1111


Mantissa (23 bits) =
011 0011 1000 0010 0001 0000


The base ten decimal number 111 110 110 110 011 001 100 110 011 001 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1101 1111 - 011 0011 1000 0010 0001 0000

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 7 324 058 973 248 975 324 659 082 376 980 219 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 20 00:48 UTC (GMT)
Number -1.955 2 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 20 00:48 UTC (GMT)
Number 100.603 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 20 00:48 UTC (GMT)
Number 1 000 001 000 000 000 000 000 000 031 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 20 00:48 UTC (GMT)
Number 65.6 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 20 00:48 UTC (GMT)
Number 11 111 000 011 110 000 111 100 001 110 942 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 20 00:48 UTC (GMT)
Number 19.270 751 955 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 20 00:48 UTC (GMT)
Number 2 148 007 896 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 20 00:48 UTC (GMT)
Number 3.041 592 4 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 20 00:48 UTC (GMT)
Number -756 675 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 20 00:48 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111