32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 0.721 792 866 027 13 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 0.721 792 866 027 13(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. First, convert to binary (in base 2) the integer part: 0.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 0 ÷ 2 = 0 + 0;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


0(10) =


0(2)


3. Convert to binary (base 2) the fractional part: 0.721 792 866 027 13.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.721 792 866 027 13 × 2 = 1 + 0.443 585 732 054 26;
  • 2) 0.443 585 732 054 26 × 2 = 0 + 0.887 171 464 108 52;
  • 3) 0.887 171 464 108 52 × 2 = 1 + 0.774 342 928 217 04;
  • 4) 0.774 342 928 217 04 × 2 = 1 + 0.548 685 856 434 08;
  • 5) 0.548 685 856 434 08 × 2 = 1 + 0.097 371 712 868 16;
  • 6) 0.097 371 712 868 16 × 2 = 0 + 0.194 743 425 736 32;
  • 7) 0.194 743 425 736 32 × 2 = 0 + 0.389 486 851 472 64;
  • 8) 0.389 486 851 472 64 × 2 = 0 + 0.778 973 702 945 28;
  • 9) 0.778 973 702 945 28 × 2 = 1 + 0.557 947 405 890 56;
  • 10) 0.557 947 405 890 56 × 2 = 1 + 0.115 894 811 781 12;
  • 11) 0.115 894 811 781 12 × 2 = 0 + 0.231 789 623 562 24;
  • 12) 0.231 789 623 562 24 × 2 = 0 + 0.463 579 247 124 48;
  • 13) 0.463 579 247 124 48 × 2 = 0 + 0.927 158 494 248 96;
  • 14) 0.927 158 494 248 96 × 2 = 1 + 0.854 316 988 497 92;
  • 15) 0.854 316 988 497 92 × 2 = 1 + 0.708 633 976 995 84;
  • 16) 0.708 633 976 995 84 × 2 = 1 + 0.417 267 953 991 68;
  • 17) 0.417 267 953 991 68 × 2 = 0 + 0.834 535 907 983 36;
  • 18) 0.834 535 907 983 36 × 2 = 1 + 0.669 071 815 966 72;
  • 19) 0.669 071 815 966 72 × 2 = 1 + 0.338 143 631 933 44;
  • 20) 0.338 143 631 933 44 × 2 = 0 + 0.676 287 263 866 88;
  • 21) 0.676 287 263 866 88 × 2 = 1 + 0.352 574 527 733 76;
  • 22) 0.352 574 527 733 76 × 2 = 0 + 0.705 149 055 467 52;
  • 23) 0.705 149 055 467 52 × 2 = 1 + 0.410 298 110 935 04;
  • 24) 0.410 298 110 935 04 × 2 = 0 + 0.820 596 221 870 08;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.721 792 866 027 13(10) =


0.1011 1000 1100 0111 0110 1010(2)


5. Positive number before normalization:

0.721 792 866 027 13(10) =


0.1011 1000 1100 0111 0110 1010(2)

6. Normalize the binary representation of the number.

Shift the decimal mark 1 positions to the right, so that only one non zero digit remains to the left of it:


0.721 792 866 027 13(10) =


0.1011 1000 1100 0111 0110 1010(2) =


0.1011 1000 1100 0111 0110 1010(2) × 20 =


1.0111 0001 1000 1110 1101 010(2) × 2-1


7. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): -1


Mantissa (not normalized):
1.0111 0001 1000 1110 1101 010


8. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


-1 + 2(8-1) - 1 =


(-1 + 127)(10) =


126(10)


9. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 126 ÷ 2 = 63 + 0;
  • 63 ÷ 2 = 31 + 1;
  • 31 ÷ 2 = 15 + 1;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


126(10) =


0111 1110(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, only if necessary (not the case here).


Mantissa (normalized) =


1. 011 1000 1100 0111 0110 1010 =


011 1000 1100 0111 0110 1010


12. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
0111 1110


Mantissa (23 bits) =
011 1000 1100 0111 0110 1010


The base ten decimal number 0.721 792 866 027 13 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 0111 1110 - 011 1000 1100 0111 0110 1010

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number -301 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Jun 17 17:55 UTC (GMT)
Number 0.111 111 111 15 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Jun 17 17:55 UTC (GMT)
Number 457 658 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Jun 17 17:55 UTC (GMT)
Number -3.141 491 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Jun 17 17:55 UTC (GMT)
Number 94.3 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Jun 17 17:55 UTC (GMT)
Number 969 638 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Jun 17 17:55 UTC (GMT)
Number 53 516 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Jun 17 17:55 UTC (GMT)
Number -164.71 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Jun 17 17:55 UTC (GMT)
Number 1 107 543 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Jun 17 17:55 UTC (GMT)
Number 2.028 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Jun 17 17:55 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111