Convert the Number 0.721 792 866 027 13 to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number. Detailed Explanations

Number 0.721 792 866 027 13(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (to base 2) the integer part of the number.

Convert to binary the fractional part of the number.


1. First, convert to binary (in base 2) the integer part: 0.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 0 ÷ 2 = 0 + 0;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


0(10) =


0(2)


3. Convert to binary (base 2) the fractional part: 0.721 792 866 027 13.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.721 792 866 027 13 × 2 = 1 + 0.443 585 732 054 26;
  • 2) 0.443 585 732 054 26 × 2 = 0 + 0.887 171 464 108 52;
  • 3) 0.887 171 464 108 52 × 2 = 1 + 0.774 342 928 217 04;
  • 4) 0.774 342 928 217 04 × 2 = 1 + 0.548 685 856 434 08;
  • 5) 0.548 685 856 434 08 × 2 = 1 + 0.097 371 712 868 16;
  • 6) 0.097 371 712 868 16 × 2 = 0 + 0.194 743 425 736 32;
  • 7) 0.194 743 425 736 32 × 2 = 0 + 0.389 486 851 472 64;
  • 8) 0.389 486 851 472 64 × 2 = 0 + 0.778 973 702 945 28;
  • 9) 0.778 973 702 945 28 × 2 = 1 + 0.557 947 405 890 56;
  • 10) 0.557 947 405 890 56 × 2 = 1 + 0.115 894 811 781 12;
  • 11) 0.115 894 811 781 12 × 2 = 0 + 0.231 789 623 562 24;
  • 12) 0.231 789 623 562 24 × 2 = 0 + 0.463 579 247 124 48;
  • 13) 0.463 579 247 124 48 × 2 = 0 + 0.927 158 494 248 96;
  • 14) 0.927 158 494 248 96 × 2 = 1 + 0.854 316 988 497 92;
  • 15) 0.854 316 988 497 92 × 2 = 1 + 0.708 633 976 995 84;
  • 16) 0.708 633 976 995 84 × 2 = 1 + 0.417 267 953 991 68;
  • 17) 0.417 267 953 991 68 × 2 = 0 + 0.834 535 907 983 36;
  • 18) 0.834 535 907 983 36 × 2 = 1 + 0.669 071 815 966 72;
  • 19) 0.669 071 815 966 72 × 2 = 1 + 0.338 143 631 933 44;
  • 20) 0.338 143 631 933 44 × 2 = 0 + 0.676 287 263 866 88;
  • 21) 0.676 287 263 866 88 × 2 = 1 + 0.352 574 527 733 76;
  • 22) 0.352 574 527 733 76 × 2 = 0 + 0.705 149 055 467 52;
  • 23) 0.705 149 055 467 52 × 2 = 1 + 0.410 298 110 935 04;
  • 24) 0.410 298 110 935 04 × 2 = 0 + 0.820 596 221 870 08;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.721 792 866 027 13(10) =


0.1011 1000 1100 0111 0110 1010(2)


5. Positive number before normalization:

0.721 792 866 027 13(10) =


0.1011 1000 1100 0111 0110 1010(2)


The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


6. Normalize the binary representation of the number.

Shift the decimal mark 1 positions to the right, so that only one non zero digit remains to the left of it:


0.721 792 866 027 13(10) =


0.1011 1000 1100 0111 0110 1010(2) =


0.1011 1000 1100 0111 0110 1010(2) × 20 =


1.0111 0001 1000 1110 1101 010(2) × 2-1


7. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): -1


Mantissa (not normalized):
1.0111 0001 1000 1110 1101 010


8. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


-1 + 2(8-1) - 1 =


(-1 + 127)(10) =


126(10)


9. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 126 ÷ 2 = 63 + 0;
  • 63 ÷ 2 = 31 + 1;
  • 31 ÷ 2 = 15 + 1;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


126(10) =


0111 1110(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, only if necessary (not the case here).


Mantissa (normalized) =


1. 011 1000 1100 0111 0110 1010 =


011 1000 1100 0111 0110 1010


12. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
0111 1110


Mantissa (23 bits) =
011 1000 1100 0111 0110 1010


The base ten decimal number 0.721 792 866 027 13 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 0111 1110 - 011 1000 1100 0111 0110 1010

(32 bits IEEE 754)

Number 0.721 792 866 027 12 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point representation = ?

Number 0.721 792 866 027 14 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point representation = ?

Convert to 32 bit single precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 0.721 792 866 027 13 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:04 UTC (GMT)
Number 2 471 074 114 791 245 113 841 100 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:04 UTC (GMT)
Number 63 584 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:04 UTC (GMT)
Number 1 476 186 953 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:04 UTC (GMT)
Number 1 099 999 999 999 999 999 949 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:04 UTC (GMT)
Number 110 000 010 000 011 000 000 000 000 000 015 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:04 UTC (GMT)
Number 1 267 650 600 228 229 401 496 703 205 341 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:04 UTC (GMT)
Number 111 000 001 010 101 110 100 111 110 101 064 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:04 UTC (GMT)
Number 2.136 1 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:04 UTC (GMT)
Number -1 425.79 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:04 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal