32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 0.000 000 000 000 000 000 000 000 000 000 000 01 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 0.000 000 000 000 000 000 000 000 000 000 000 01(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. First, convert to binary (in base 2) the integer part: 0.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 0 ÷ 2 = 0 + 0;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


0(10) =


0(2)


3. Convert to binary (base 2) the fractional part: 0.000 000 000 000 000 000 000 000 000 000 000 01.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.000 000 000 000 000 000 000 000 000 000 000 01 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 02;
  • 2) 0.000 000 000 000 000 000 000 000 000 000 000 02 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 04;
  • 3) 0.000 000 000 000 000 000 000 000 000 000 000 04 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 08;
  • 4) 0.000 000 000 000 000 000 000 000 000 000 000 08 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 16;
  • 5) 0.000 000 000 000 000 000 000 000 000 000 000 16 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 32;
  • 6) 0.000 000 000 000 000 000 000 000 000 000 000 32 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 64;
  • 7) 0.000 000 000 000 000 000 000 000 000 000 000 64 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 001 28;
  • 8) 0.000 000 000 000 000 000 000 000 000 000 001 28 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 002 56;
  • 9) 0.000 000 000 000 000 000 000 000 000 000 002 56 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 005 12;
  • 10) 0.000 000 000 000 000 000 000 000 000 000 005 12 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 010 24;
  • 11) 0.000 000 000 000 000 000 000 000 000 000 010 24 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 020 48;
  • 12) 0.000 000 000 000 000 000 000 000 000 000 020 48 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 040 96;
  • 13) 0.000 000 000 000 000 000 000 000 000 000 040 96 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 081 92;
  • 14) 0.000 000 000 000 000 000 000 000 000 000 081 92 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 163 84;
  • 15) 0.000 000 000 000 000 000 000 000 000 000 163 84 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 327 68;
  • 16) 0.000 000 000 000 000 000 000 000 000 000 327 68 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 655 36;
  • 17) 0.000 000 000 000 000 000 000 000 000 000 655 36 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 001 310 72;
  • 18) 0.000 000 000 000 000 000 000 000 000 001 310 72 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 002 621 44;
  • 19) 0.000 000 000 000 000 000 000 000 000 002 621 44 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 005 242 88;
  • 20) 0.000 000 000 000 000 000 000 000 000 005 242 88 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 010 485 76;
  • 21) 0.000 000 000 000 000 000 000 000 000 010 485 76 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 020 971 52;
  • 22) 0.000 000 000 000 000 000 000 000 000 020 971 52 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 041 943 04;
  • 23) 0.000 000 000 000 000 000 000 000 000 041 943 04 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 083 886 08;
  • 24) 0.000 000 000 000 000 000 000 000 000 083 886 08 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 167 772 16;
  • 25) 0.000 000 000 000 000 000 000 000 000 167 772 16 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 335 544 32;
  • 26) 0.000 000 000 000 000 000 000 000 000 335 544 32 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 671 088 64;
  • 27) 0.000 000 000 000 000 000 000 000 000 671 088 64 × 2 = 0 + 0.000 000 000 000 000 000 000 000 001 342 177 28;
  • 28) 0.000 000 000 000 000 000 000 000 001 342 177 28 × 2 = 0 + 0.000 000 000 000 000 000 000 000 002 684 354 56;
  • 29) 0.000 000 000 000 000 000 000 000 002 684 354 56 × 2 = 0 + 0.000 000 000 000 000 000 000 000 005 368 709 12;
  • 30) 0.000 000 000 000 000 000 000 000 005 368 709 12 × 2 = 0 + 0.000 000 000 000 000 000 000 000 010 737 418 24;
  • 31) 0.000 000 000 000 000 000 000 000 010 737 418 24 × 2 = 0 + 0.000 000 000 000 000 000 000 000 021 474 836 48;
  • 32) 0.000 000 000 000 000 000 000 000 021 474 836 48 × 2 = 0 + 0.000 000 000 000 000 000 000 000 042 949 672 96;
  • 33) 0.000 000 000 000 000 000 000 000 042 949 672 96 × 2 = 0 + 0.000 000 000 000 000 000 000 000 085 899 345 92;
  • 34) 0.000 000 000 000 000 000 000 000 085 899 345 92 × 2 = 0 + 0.000 000 000 000 000 000 000 000 171 798 691 84;
  • 35) 0.000 000 000 000 000 000 000 000 171 798 691 84 × 2 = 0 + 0.000 000 000 000 000 000 000 000 343 597 383 68;
  • 36) 0.000 000 000 000 000 000 000 000 343 597 383 68 × 2 = 0 + 0.000 000 000 000 000 000 000 000 687 194 767 36;
  • 37) 0.000 000 000 000 000 000 000 000 687 194 767 36 × 2 = 0 + 0.000 000 000 000 000 000 000 001 374 389 534 72;
  • 38) 0.000 000 000 000 000 000 000 001 374 389 534 72 × 2 = 0 + 0.000 000 000 000 000 000 000 002 748 779 069 44;
  • 39) 0.000 000 000 000 000 000 000 002 748 779 069 44 × 2 = 0 + 0.000 000 000 000 000 000 000 005 497 558 138 88;
  • 40) 0.000 000 000 000 000 000 000 005 497 558 138 88 × 2 = 0 + 0.000 000 000 000 000 000 000 010 995 116 277 76;
  • 41) 0.000 000 000 000 000 000 000 010 995 116 277 76 × 2 = 0 + 0.000 000 000 000 000 000 000 021 990 232 555 52;
  • 42) 0.000 000 000 000 000 000 000 021 990 232 555 52 × 2 = 0 + 0.000 000 000 000 000 000 000 043 980 465 111 04;
  • 43) 0.000 000 000 000 000 000 000 043 980 465 111 04 × 2 = 0 + 0.000 000 000 000 000 000 000 087 960 930 222 08;
  • 44) 0.000 000 000 000 000 000 000 087 960 930 222 08 × 2 = 0 + 0.000 000 000 000 000 000 000 175 921 860 444 16;
  • 45) 0.000 000 000 000 000 000 000 175 921 860 444 16 × 2 = 0 + 0.000 000 000 000 000 000 000 351 843 720 888 32;
  • 46) 0.000 000 000 000 000 000 000 351 843 720 888 32 × 2 = 0 + 0.000 000 000 000 000 000 000 703 687 441 776 64;
  • 47) 0.000 000 000 000 000 000 000 703 687 441 776 64 × 2 = 0 + 0.000 000 000 000 000 000 001 407 374 883 553 28;
  • 48) 0.000 000 000 000 000 000 001 407 374 883 553 28 × 2 = 0 + 0.000 000 000 000 000 000 002 814 749 767 106 56;
  • 49) 0.000 000 000 000 000 000 002 814 749 767 106 56 × 2 = 0 + 0.000 000 000 000 000 000 005 629 499 534 213 12;
  • 50) 0.000 000 000 000 000 000 005 629 499 534 213 12 × 2 = 0 + 0.000 000 000 000 000 000 011 258 999 068 426 24;
  • 51) 0.000 000 000 000 000 000 011 258 999 068 426 24 × 2 = 0 + 0.000 000 000 000 000 000 022 517 998 136 852 48;
  • 52) 0.000 000 000 000 000 000 022 517 998 136 852 48 × 2 = 0 + 0.000 000 000 000 000 000 045 035 996 273 704 96;
  • 53) 0.000 000 000 000 000 000 045 035 996 273 704 96 × 2 = 0 + 0.000 000 000 000 000 000 090 071 992 547 409 92;
  • 54) 0.000 000 000 000 000 000 090 071 992 547 409 92 × 2 = 0 + 0.000 000 000 000 000 000 180 143 985 094 819 84;
  • 55) 0.000 000 000 000 000 000 180 143 985 094 819 84 × 2 = 0 + 0.000 000 000 000 000 000 360 287 970 189 639 68;
  • 56) 0.000 000 000 000 000 000 360 287 970 189 639 68 × 2 = 0 + 0.000 000 000 000 000 000 720 575 940 379 279 36;
  • 57) 0.000 000 000 000 000 000 720 575 940 379 279 36 × 2 = 0 + 0.000 000 000 000 000 001 441 151 880 758 558 72;
  • 58) 0.000 000 000 000 000 001 441 151 880 758 558 72 × 2 = 0 + 0.000 000 000 000 000 002 882 303 761 517 117 44;
  • 59) 0.000 000 000 000 000 002 882 303 761 517 117 44 × 2 = 0 + 0.000 000 000 000 000 005 764 607 523 034 234 88;
  • 60) 0.000 000 000 000 000 005 764 607 523 034 234 88 × 2 = 0 + 0.000 000 000 000 000 011 529 215 046 068 469 76;
  • 61) 0.000 000 000 000 000 011 529 215 046 068 469 76 × 2 = 0 + 0.000 000 000 000 000 023 058 430 092 136 939 52;
  • 62) 0.000 000 000 000 000 023 058 430 092 136 939 52 × 2 = 0 + 0.000 000 000 000 000 046 116 860 184 273 879 04;
  • 63) 0.000 000 000 000 000 046 116 860 184 273 879 04 × 2 = 0 + 0.000 000 000 000 000 092 233 720 368 547 758 08;
  • 64) 0.000 000 000 000 000 092 233 720 368 547 758 08 × 2 = 0 + 0.000 000 000 000 000 184 467 440 737 095 516 16;
  • 65) 0.000 000 000 000 000 184 467 440 737 095 516 16 × 2 = 0 + 0.000 000 000 000 000 368 934 881 474 191 032 32;
  • 66) 0.000 000 000 000 000 368 934 881 474 191 032 32 × 2 = 0 + 0.000 000 000 000 000 737 869 762 948 382 064 64;
  • 67) 0.000 000 000 000 000 737 869 762 948 382 064 64 × 2 = 0 + 0.000 000 000 000 001 475 739 525 896 764 129 28;
  • 68) 0.000 000 000 000 001 475 739 525 896 764 129 28 × 2 = 0 + 0.000 000 000 000 002 951 479 051 793 528 258 56;
  • 69) 0.000 000 000 000 002 951 479 051 793 528 258 56 × 2 = 0 + 0.000 000 000 000 005 902 958 103 587 056 517 12;
  • 70) 0.000 000 000 000 005 902 958 103 587 056 517 12 × 2 = 0 + 0.000 000 000 000 011 805 916 207 174 113 034 24;
  • 71) 0.000 000 000 000 011 805 916 207 174 113 034 24 × 2 = 0 + 0.000 000 000 000 023 611 832 414 348 226 068 48;
  • 72) 0.000 000 000 000 023 611 832 414 348 226 068 48 × 2 = 0 + 0.000 000 000 000 047 223 664 828 696 452 136 96;
  • 73) 0.000 000 000 000 047 223 664 828 696 452 136 96 × 2 = 0 + 0.000 000 000 000 094 447 329 657 392 904 273 92;
  • 74) 0.000 000 000 000 094 447 329 657 392 904 273 92 × 2 = 0 + 0.000 000 000 000 188 894 659 314 785 808 547 84;
  • 75) 0.000 000 000 000 188 894 659 314 785 808 547 84 × 2 = 0 + 0.000 000 000 000 377 789 318 629 571 617 095 68;
  • 76) 0.000 000 000 000 377 789 318 629 571 617 095 68 × 2 = 0 + 0.000 000 000 000 755 578 637 259 143 234 191 36;
  • 77) 0.000 000 000 000 755 578 637 259 143 234 191 36 × 2 = 0 + 0.000 000 000 001 511 157 274 518 286 468 382 72;
  • 78) 0.000 000 000 001 511 157 274 518 286 468 382 72 × 2 = 0 + 0.000 000 000 003 022 314 549 036 572 936 765 44;
  • 79) 0.000 000 000 003 022 314 549 036 572 936 765 44 × 2 = 0 + 0.000 000 000 006 044 629 098 073 145 873 530 88;
  • 80) 0.000 000 000 006 044 629 098 073 145 873 530 88 × 2 = 0 + 0.000 000 000 012 089 258 196 146 291 747 061 76;
  • 81) 0.000 000 000 012 089 258 196 146 291 747 061 76 × 2 = 0 + 0.000 000 000 024 178 516 392 292 583 494 123 52;
  • 82) 0.000 000 000 024 178 516 392 292 583 494 123 52 × 2 = 0 + 0.000 000 000 048 357 032 784 585 166 988 247 04;
  • 83) 0.000 000 000 048 357 032 784 585 166 988 247 04 × 2 = 0 + 0.000 000 000 096 714 065 569 170 333 976 494 08;
  • 84) 0.000 000 000 096 714 065 569 170 333 976 494 08 × 2 = 0 + 0.000 000 000 193 428 131 138 340 667 952 988 16;
  • 85) 0.000 000 000 193 428 131 138 340 667 952 988 16 × 2 = 0 + 0.000 000 000 386 856 262 276 681 335 905 976 32;
  • 86) 0.000 000 000 386 856 262 276 681 335 905 976 32 × 2 = 0 + 0.000 000 000 773 712 524 553 362 671 811 952 64;
  • 87) 0.000 000 000 773 712 524 553 362 671 811 952 64 × 2 = 0 + 0.000 000 001 547 425 049 106 725 343 623 905 28;
  • 88) 0.000 000 001 547 425 049 106 725 343 623 905 28 × 2 = 0 + 0.000 000 003 094 850 098 213 450 687 247 810 56;
  • 89) 0.000 000 003 094 850 098 213 450 687 247 810 56 × 2 = 0 + 0.000 000 006 189 700 196 426 901 374 495 621 12;
  • 90) 0.000 000 006 189 700 196 426 901 374 495 621 12 × 2 = 0 + 0.000 000 012 379 400 392 853 802 748 991 242 24;
  • 91) 0.000 000 012 379 400 392 853 802 748 991 242 24 × 2 = 0 + 0.000 000 024 758 800 785 707 605 497 982 484 48;
  • 92) 0.000 000 024 758 800 785 707 605 497 982 484 48 × 2 = 0 + 0.000 000 049 517 601 571 415 210 995 964 968 96;
  • 93) 0.000 000 049 517 601 571 415 210 995 964 968 96 × 2 = 0 + 0.000 000 099 035 203 142 830 421 991 929 937 92;
  • 94) 0.000 000 099 035 203 142 830 421 991 929 937 92 × 2 = 0 + 0.000 000 198 070 406 285 660 843 983 859 875 84;
  • 95) 0.000 000 198 070 406 285 660 843 983 859 875 84 × 2 = 0 + 0.000 000 396 140 812 571 321 687 967 719 751 68;
  • 96) 0.000 000 396 140 812 571 321 687 967 719 751 68 × 2 = 0 + 0.000 000 792 281 625 142 643 375 935 439 503 36;
  • 97) 0.000 000 792 281 625 142 643 375 935 439 503 36 × 2 = 0 + 0.000 001 584 563 250 285 286 751 870 879 006 72;
  • 98) 0.000 001 584 563 250 285 286 751 870 879 006 72 × 2 = 0 + 0.000 003 169 126 500 570 573 503 741 758 013 44;
  • 99) 0.000 003 169 126 500 570 573 503 741 758 013 44 × 2 = 0 + 0.000 006 338 253 001 141 147 007 483 516 026 88;
  • 100) 0.000 006 338 253 001 141 147 007 483 516 026 88 × 2 = 0 + 0.000 012 676 506 002 282 294 014 967 032 053 76;
  • 101) 0.000 012 676 506 002 282 294 014 967 032 053 76 × 2 = 0 + 0.000 025 353 012 004 564 588 029 934 064 107 52;
  • 102) 0.000 025 353 012 004 564 588 029 934 064 107 52 × 2 = 0 + 0.000 050 706 024 009 129 176 059 868 128 215 04;
  • 103) 0.000 050 706 024 009 129 176 059 868 128 215 04 × 2 = 0 + 0.000 101 412 048 018 258 352 119 736 256 430 08;
  • 104) 0.000 101 412 048 018 258 352 119 736 256 430 08 × 2 = 0 + 0.000 202 824 096 036 516 704 239 472 512 860 16;
  • 105) 0.000 202 824 096 036 516 704 239 472 512 860 16 × 2 = 0 + 0.000 405 648 192 073 033 408 478 945 025 720 32;
  • 106) 0.000 405 648 192 073 033 408 478 945 025 720 32 × 2 = 0 + 0.000 811 296 384 146 066 816 957 890 051 440 64;
  • 107) 0.000 811 296 384 146 066 816 957 890 051 440 64 × 2 = 0 + 0.001 622 592 768 292 133 633 915 780 102 881 28;
  • 108) 0.001 622 592 768 292 133 633 915 780 102 881 28 × 2 = 0 + 0.003 245 185 536 584 267 267 831 560 205 762 56;
  • 109) 0.003 245 185 536 584 267 267 831 560 205 762 56 × 2 = 0 + 0.006 490 371 073 168 534 535 663 120 411 525 12;
  • 110) 0.006 490 371 073 168 534 535 663 120 411 525 12 × 2 = 0 + 0.012 980 742 146 337 069 071 326 240 823 050 24;
  • 111) 0.012 980 742 146 337 069 071 326 240 823 050 24 × 2 = 0 + 0.025 961 484 292 674 138 142 652 481 646 100 48;
  • 112) 0.025 961 484 292 674 138 142 652 481 646 100 48 × 2 = 0 + 0.051 922 968 585 348 276 285 304 963 292 200 96;
  • 113) 0.051 922 968 585 348 276 285 304 963 292 200 96 × 2 = 0 + 0.103 845 937 170 696 552 570 609 926 584 401 92;
  • 114) 0.103 845 937 170 696 552 570 609 926 584 401 92 × 2 = 0 + 0.207 691 874 341 393 105 141 219 853 168 803 84;
  • 115) 0.207 691 874 341 393 105 141 219 853 168 803 84 × 2 = 0 + 0.415 383 748 682 786 210 282 439 706 337 607 68;
  • 116) 0.415 383 748 682 786 210 282 439 706 337 607 68 × 2 = 0 + 0.830 767 497 365 572 420 564 879 412 675 215 36;
  • 117) 0.830 767 497 365 572 420 564 879 412 675 215 36 × 2 = 1 + 0.661 534 994 731 144 841 129 758 825 350 430 72;
  • 118) 0.661 534 994 731 144 841 129 758 825 350 430 72 × 2 = 1 + 0.323 069 989 462 289 682 259 517 650 700 861 44;
  • 119) 0.323 069 989 462 289 682 259 517 650 700 861 44 × 2 = 0 + 0.646 139 978 924 579 364 519 035 301 401 722 88;
  • 120) 0.646 139 978 924 579 364 519 035 301 401 722 88 × 2 = 1 + 0.292 279 957 849 158 729 038 070 602 803 445 76;
  • 121) 0.292 279 957 849 158 729 038 070 602 803 445 76 × 2 = 0 + 0.584 559 915 698 317 458 076 141 205 606 891 52;
  • 122) 0.584 559 915 698 317 458 076 141 205 606 891 52 × 2 = 1 + 0.169 119 831 396 634 916 152 282 411 213 783 04;
  • 123) 0.169 119 831 396 634 916 152 282 411 213 783 04 × 2 = 0 + 0.338 239 662 793 269 832 304 564 822 427 566 08;
  • 124) 0.338 239 662 793 269 832 304 564 822 427 566 08 × 2 = 0 + 0.676 479 325 586 539 664 609 129 644 855 132 16;
  • 125) 0.676 479 325 586 539 664 609 129 644 855 132 16 × 2 = 1 + 0.352 958 651 173 079 329 218 259 289 710 264 32;
  • 126) 0.352 958 651 173 079 329 218 259 289 710 264 32 × 2 = 0 + 0.705 917 302 346 158 658 436 518 579 420 528 64;
  • 127) 0.705 917 302 346 158 658 436 518 579 420 528 64 × 2 = 1 + 0.411 834 604 692 317 316 873 037 158 841 057 28;
  • 128) 0.411 834 604 692 317 316 873 037 158 841 057 28 × 2 = 0 + 0.823 669 209 384 634 633 746 074 317 682 114 56;
  • 129) 0.823 669 209 384 634 633 746 074 317 682 114 56 × 2 = 1 + 0.647 338 418 769 269 267 492 148 635 364 229 12;
  • 130) 0.647 338 418 769 269 267 492 148 635 364 229 12 × 2 = 1 + 0.294 676 837 538 538 534 984 297 270 728 458 24;
  • 131) 0.294 676 837 538 538 534 984 297 270 728 458 24 × 2 = 0 + 0.589 353 675 077 077 069 968 594 541 456 916 48;
  • 132) 0.589 353 675 077 077 069 968 594 541 456 916 48 × 2 = 1 + 0.178 707 350 154 154 139 937 189 082 913 832 96;
  • 133) 0.178 707 350 154 154 139 937 189 082 913 832 96 × 2 = 0 + 0.357 414 700 308 308 279 874 378 165 827 665 92;
  • 134) 0.357 414 700 308 308 279 874 378 165 827 665 92 × 2 = 0 + 0.714 829 400 616 616 559 748 756 331 655 331 84;
  • 135) 0.714 829 400 616 616 559 748 756 331 655 331 84 × 2 = 1 + 0.429 658 801 233 233 119 497 512 663 310 663 68;
  • 136) 0.429 658 801 233 233 119 497 512 663 310 663 68 × 2 = 0 + 0.859 317 602 466 466 238 995 025 326 621 327 36;
  • 137) 0.859 317 602 466 466 238 995 025 326 621 327 36 × 2 = 1 + 0.718 635 204 932 932 477 990 050 653 242 654 72;
  • 138) 0.718 635 204 932 932 477 990 050 653 242 654 72 × 2 = 1 + 0.437 270 409 865 864 955 980 101 306 485 309 44;
  • 139) 0.437 270 409 865 864 955 980 101 306 485 309 44 × 2 = 0 + 0.874 540 819 731 729 911 960 202 612 970 618 88;
  • 140) 0.874 540 819 731 729 911 960 202 612 970 618 88 × 2 = 1 + 0.749 081 639 463 459 823 920 405 225 941 237 76;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.000 000 000 000 000 000 000 000 000 000 000 01(10) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1101 0100 1010 1101 0010 1101(2)


5. Positive number before normalization:

0.000 000 000 000 000 000 000 000 000 000 000 01(10) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1101 0100 1010 1101 0010 1101(2)

6. Normalize the binary representation of the number.

Shift the decimal mark 117 positions to the right, so that only one non zero digit remains to the left of it:


0.000 000 000 000 000 000 000 000 000 000 000 01(10) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1101 0100 1010 1101 0010 1101(2) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1101 0100 1010 1101 0010 1101(2) × 20 =


1.1010 1001 0101 1010 0101 101(2) × 2-117


7. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): -117


Mantissa (not normalized):
1.1010 1001 0101 1010 0101 101


8. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


-117 + 2(8-1) - 1 =


(-117 + 127)(10) =


10(10)


9. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 10 ÷ 2 = 5 + 0;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


10(10) =


0000 1010(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, only if necessary (not the case here).


Mantissa (normalized) =


1. 101 0100 1010 1101 0010 1101 =


101 0100 1010 1101 0010 1101


12. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
0000 1010


Mantissa (23 bits) =
101 0100 1010 1101 0010 1101


The base ten decimal number 0.000 000 000 000 000 000 000 000 000 000 000 01 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 0000 1010 - 101 0100 1010 1101 0010 1101

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 59.627 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 19 23:52 UTC (GMT)
Number 10.875 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 19 23:52 UTC (GMT)
Number 562 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 19 23:52 UTC (GMT)
Number 1 906 649 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 19 23:52 UTC (GMT)
Number 562 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 19 23:52 UTC (GMT)
Number 26.11 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 19 23:52 UTC (GMT)
Number 40 964 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 19 23:52 UTC (GMT)
Number 2.718 281 745 910 644 54 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 19 23:52 UTC (GMT)
Number 5.673 7 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 19 23:52 UTC (GMT)
Number -3 078 893 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 19 23:52 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111