Decimal to 32 Bit IEEE 754 Binary: Convert Number 0.000 000 000 000 000 000 000 000 000 000 000 000 007 346 5 to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From Base Ten Decimal System

Number 0.000 000 000 000 000 000 000 000 000 000 000 000 007 346 5(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation standard (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. First, convert to binary (in base 2) the integer part: 0.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 0 ÷ 2 = 0 + 0;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.

0(10) =


0(2)


3. Convert to binary (base 2) the fractional part: 0.000 000 000 000 000 000 000 000 000 000 000 000 007 346 5.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.000 000 000 000 000 000 000 000 000 000 000 000 007 346 5 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 014 693;
  • 2) 0.000 000 000 000 000 000 000 000 000 000 000 000 014 693 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 029 386;
  • 3) 0.000 000 000 000 000 000 000 000 000 000 000 000 029 386 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 058 772;
  • 4) 0.000 000 000 000 000 000 000 000 000 000 000 000 058 772 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 117 544;
  • 5) 0.000 000 000 000 000 000 000 000 000 000 000 000 117 544 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 235 088;
  • 6) 0.000 000 000 000 000 000 000 000 000 000 000 000 235 088 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 470 176;
  • 7) 0.000 000 000 000 000 000 000 000 000 000 000 000 470 176 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 940 352;
  • 8) 0.000 000 000 000 000 000 000 000 000 000 000 000 940 352 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 001 880 704;
  • 9) 0.000 000 000 000 000 000 000 000 000 000 000 001 880 704 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 003 761 408;
  • 10) 0.000 000 000 000 000 000 000 000 000 000 000 003 761 408 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 007 522 816;
  • 11) 0.000 000 000 000 000 000 000 000 000 000 000 007 522 816 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 015 045 632;
  • 12) 0.000 000 000 000 000 000 000 000 000 000 000 015 045 632 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 030 091 264;
  • 13) 0.000 000 000 000 000 000 000 000 000 000 000 030 091 264 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 060 182 528;
  • 14) 0.000 000 000 000 000 000 000 000 000 000 000 060 182 528 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 120 365 056;
  • 15) 0.000 000 000 000 000 000 000 000 000 000 000 120 365 056 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 240 730 112;
  • 16) 0.000 000 000 000 000 000 000 000 000 000 000 240 730 112 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 481 460 224;
  • 17) 0.000 000 000 000 000 000 000 000 000 000 000 481 460 224 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 962 920 448;
  • 18) 0.000 000 000 000 000 000 000 000 000 000 000 962 920 448 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 001 925 840 896;
  • 19) 0.000 000 000 000 000 000 000 000 000 000 001 925 840 896 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 003 851 681 792;
  • 20) 0.000 000 000 000 000 000 000 000 000 000 003 851 681 792 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 007 703 363 584;
  • 21) 0.000 000 000 000 000 000 000 000 000 000 007 703 363 584 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 015 406 727 168;
  • 22) 0.000 000 000 000 000 000 000 000 000 000 015 406 727 168 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 030 813 454 336;
  • 23) 0.000 000 000 000 000 000 000 000 000 000 030 813 454 336 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 061 626 908 672;
  • 24) 0.000 000 000 000 000 000 000 000 000 000 061 626 908 672 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 123 253 817 344;
  • 25) 0.000 000 000 000 000 000 000 000 000 000 123 253 817 344 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 246 507 634 688;
  • 26) 0.000 000 000 000 000 000 000 000 000 000 246 507 634 688 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 493 015 269 376;
  • 27) 0.000 000 000 000 000 000 000 000 000 000 493 015 269 376 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 986 030 538 752;
  • 28) 0.000 000 000 000 000 000 000 000 000 000 986 030 538 752 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 001 972 061 077 504;
  • 29) 0.000 000 000 000 000 000 000 000 000 001 972 061 077 504 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 003 944 122 155 008;
  • 30) 0.000 000 000 000 000 000 000 000 000 003 944 122 155 008 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 007 888 244 310 016;
  • 31) 0.000 000 000 000 000 000 000 000 000 007 888 244 310 016 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 015 776 488 620 032;
  • 32) 0.000 000 000 000 000 000 000 000 000 015 776 488 620 032 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 031 552 977 240 064;
  • 33) 0.000 000 000 000 000 000 000 000 000 031 552 977 240 064 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 063 105 954 480 128;
  • 34) 0.000 000 000 000 000 000 000 000 000 063 105 954 480 128 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 126 211 908 960 256;
  • 35) 0.000 000 000 000 000 000 000 000 000 126 211 908 960 256 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 252 423 817 920 512;
  • 36) 0.000 000 000 000 000 000 000 000 000 252 423 817 920 512 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 504 847 635 841 024;
  • 37) 0.000 000 000 000 000 000 000 000 000 504 847 635 841 024 × 2 = 0 + 0.000 000 000 000 000 000 000 000 001 009 695 271 682 048;
  • 38) 0.000 000 000 000 000 000 000 000 001 009 695 271 682 048 × 2 = 0 + 0.000 000 000 000 000 000 000 000 002 019 390 543 364 096;
  • 39) 0.000 000 000 000 000 000 000 000 002 019 390 543 364 096 × 2 = 0 + 0.000 000 000 000 000 000 000 000 004 038 781 086 728 192;
  • 40) 0.000 000 000 000 000 000 000 000 004 038 781 086 728 192 × 2 = 0 + 0.000 000 000 000 000 000 000 000 008 077 562 173 456 384;
  • 41) 0.000 000 000 000 000 000 000 000 008 077 562 173 456 384 × 2 = 0 + 0.000 000 000 000 000 000 000 000 016 155 124 346 912 768;
  • 42) 0.000 000 000 000 000 000 000 000 016 155 124 346 912 768 × 2 = 0 + 0.000 000 000 000 000 000 000 000 032 310 248 693 825 536;
  • 43) 0.000 000 000 000 000 000 000 000 032 310 248 693 825 536 × 2 = 0 + 0.000 000 000 000 000 000 000 000 064 620 497 387 651 072;
  • 44) 0.000 000 000 000 000 000 000 000 064 620 497 387 651 072 × 2 = 0 + 0.000 000 000 000 000 000 000 000 129 240 994 775 302 144;
  • 45) 0.000 000 000 000 000 000 000 000 129 240 994 775 302 144 × 2 = 0 + 0.000 000 000 000 000 000 000 000 258 481 989 550 604 288;
  • 46) 0.000 000 000 000 000 000 000 000 258 481 989 550 604 288 × 2 = 0 + 0.000 000 000 000 000 000 000 000 516 963 979 101 208 576;
  • 47) 0.000 000 000 000 000 000 000 000 516 963 979 101 208 576 × 2 = 0 + 0.000 000 000 000 000 000 000 001 033 927 958 202 417 152;
  • 48) 0.000 000 000 000 000 000 000 001 033 927 958 202 417 152 × 2 = 0 + 0.000 000 000 000 000 000 000 002 067 855 916 404 834 304;
  • 49) 0.000 000 000 000 000 000 000 002 067 855 916 404 834 304 × 2 = 0 + 0.000 000 000 000 000 000 000 004 135 711 832 809 668 608;
  • 50) 0.000 000 000 000 000 000 000 004 135 711 832 809 668 608 × 2 = 0 + 0.000 000 000 000 000 000 000 008 271 423 665 619 337 216;
  • 51) 0.000 000 000 000 000 000 000 008 271 423 665 619 337 216 × 2 = 0 + 0.000 000 000 000 000 000 000 016 542 847 331 238 674 432;
  • 52) 0.000 000 000 000 000 000 000 016 542 847 331 238 674 432 × 2 = 0 + 0.000 000 000 000 000 000 000 033 085 694 662 477 348 864;
  • 53) 0.000 000 000 000 000 000 000 033 085 694 662 477 348 864 × 2 = 0 + 0.000 000 000 000 000 000 000 066 171 389 324 954 697 728;
  • 54) 0.000 000 000 000 000 000 000 066 171 389 324 954 697 728 × 2 = 0 + 0.000 000 000 000 000 000 000 132 342 778 649 909 395 456;
  • 55) 0.000 000 000 000 000 000 000 132 342 778 649 909 395 456 × 2 = 0 + 0.000 000 000 000 000 000 000 264 685 557 299 818 790 912;
  • 56) 0.000 000 000 000 000 000 000 264 685 557 299 818 790 912 × 2 = 0 + 0.000 000 000 000 000 000 000 529 371 114 599 637 581 824;
  • 57) 0.000 000 000 000 000 000 000 529 371 114 599 637 581 824 × 2 = 0 + 0.000 000 000 000 000 000 001 058 742 229 199 275 163 648;
  • 58) 0.000 000 000 000 000 000 001 058 742 229 199 275 163 648 × 2 = 0 + 0.000 000 000 000 000 000 002 117 484 458 398 550 327 296;
  • 59) 0.000 000 000 000 000 000 002 117 484 458 398 550 327 296 × 2 = 0 + 0.000 000 000 000 000 000 004 234 968 916 797 100 654 592;
  • 60) 0.000 000 000 000 000 000 004 234 968 916 797 100 654 592 × 2 = 0 + 0.000 000 000 000 000 000 008 469 937 833 594 201 309 184;
  • 61) 0.000 000 000 000 000 000 008 469 937 833 594 201 309 184 × 2 = 0 + 0.000 000 000 000 000 000 016 939 875 667 188 402 618 368;
  • 62) 0.000 000 000 000 000 000 016 939 875 667 188 402 618 368 × 2 = 0 + 0.000 000 000 000 000 000 033 879 751 334 376 805 236 736;
  • 63) 0.000 000 000 000 000 000 033 879 751 334 376 805 236 736 × 2 = 0 + 0.000 000 000 000 000 000 067 759 502 668 753 610 473 472;
  • 64) 0.000 000 000 000 000 000 067 759 502 668 753 610 473 472 × 2 = 0 + 0.000 000 000 000 000 000 135 519 005 337 507 220 946 944;
  • 65) 0.000 000 000 000 000 000 135 519 005 337 507 220 946 944 × 2 = 0 + 0.000 000 000 000 000 000 271 038 010 675 014 441 893 888;
  • 66) 0.000 000 000 000 000 000 271 038 010 675 014 441 893 888 × 2 = 0 + 0.000 000 000 000 000 000 542 076 021 350 028 883 787 776;
  • 67) 0.000 000 000 000 000 000 542 076 021 350 028 883 787 776 × 2 = 0 + 0.000 000 000 000 000 001 084 152 042 700 057 767 575 552;
  • 68) 0.000 000 000 000 000 001 084 152 042 700 057 767 575 552 × 2 = 0 + 0.000 000 000 000 000 002 168 304 085 400 115 535 151 104;
  • 69) 0.000 000 000 000 000 002 168 304 085 400 115 535 151 104 × 2 = 0 + 0.000 000 000 000 000 004 336 608 170 800 231 070 302 208;
  • 70) 0.000 000 000 000 000 004 336 608 170 800 231 070 302 208 × 2 = 0 + 0.000 000 000 000 000 008 673 216 341 600 462 140 604 416;
  • 71) 0.000 000 000 000 000 008 673 216 341 600 462 140 604 416 × 2 = 0 + 0.000 000 000 000 000 017 346 432 683 200 924 281 208 832;
  • 72) 0.000 000 000 000 000 017 346 432 683 200 924 281 208 832 × 2 = 0 + 0.000 000 000 000 000 034 692 865 366 401 848 562 417 664;
  • 73) 0.000 000 000 000 000 034 692 865 366 401 848 562 417 664 × 2 = 0 + 0.000 000 000 000 000 069 385 730 732 803 697 124 835 328;
  • 74) 0.000 000 000 000 000 069 385 730 732 803 697 124 835 328 × 2 = 0 + 0.000 000 000 000 000 138 771 461 465 607 394 249 670 656;
  • 75) 0.000 000 000 000 000 138 771 461 465 607 394 249 670 656 × 2 = 0 + 0.000 000 000 000 000 277 542 922 931 214 788 499 341 312;
  • 76) 0.000 000 000 000 000 277 542 922 931 214 788 499 341 312 × 2 = 0 + 0.000 000 000 000 000 555 085 845 862 429 576 998 682 624;
  • 77) 0.000 000 000 000 000 555 085 845 862 429 576 998 682 624 × 2 = 0 + 0.000 000 000 000 001 110 171 691 724 859 153 997 365 248;
  • 78) 0.000 000 000 000 001 110 171 691 724 859 153 997 365 248 × 2 = 0 + 0.000 000 000 000 002 220 343 383 449 718 307 994 730 496;
  • 79) 0.000 000 000 000 002 220 343 383 449 718 307 994 730 496 × 2 = 0 + 0.000 000 000 000 004 440 686 766 899 436 615 989 460 992;
  • 80) 0.000 000 000 000 004 440 686 766 899 436 615 989 460 992 × 2 = 0 + 0.000 000 000 000 008 881 373 533 798 873 231 978 921 984;
  • 81) 0.000 000 000 000 008 881 373 533 798 873 231 978 921 984 × 2 = 0 + 0.000 000 000 000 017 762 747 067 597 746 463 957 843 968;
  • 82) 0.000 000 000 000 017 762 747 067 597 746 463 957 843 968 × 2 = 0 + 0.000 000 000 000 035 525 494 135 195 492 927 915 687 936;
  • 83) 0.000 000 000 000 035 525 494 135 195 492 927 915 687 936 × 2 = 0 + 0.000 000 000 000 071 050 988 270 390 985 855 831 375 872;
  • 84) 0.000 000 000 000 071 050 988 270 390 985 855 831 375 872 × 2 = 0 + 0.000 000 000 000 142 101 976 540 781 971 711 662 751 744;
  • 85) 0.000 000 000 000 142 101 976 540 781 971 711 662 751 744 × 2 = 0 + 0.000 000 000 000 284 203 953 081 563 943 423 325 503 488;
  • 86) 0.000 000 000 000 284 203 953 081 563 943 423 325 503 488 × 2 = 0 + 0.000 000 000 000 568 407 906 163 127 886 846 651 006 976;
  • 87) 0.000 000 000 000 568 407 906 163 127 886 846 651 006 976 × 2 = 0 + 0.000 000 000 001 136 815 812 326 255 773 693 302 013 952;
  • 88) 0.000 000 000 001 136 815 812 326 255 773 693 302 013 952 × 2 = 0 + 0.000 000 000 002 273 631 624 652 511 547 386 604 027 904;
  • 89) 0.000 000 000 002 273 631 624 652 511 547 386 604 027 904 × 2 = 0 + 0.000 000 000 004 547 263 249 305 023 094 773 208 055 808;
  • 90) 0.000 000 000 004 547 263 249 305 023 094 773 208 055 808 × 2 = 0 + 0.000 000 000 009 094 526 498 610 046 189 546 416 111 616;
  • 91) 0.000 000 000 009 094 526 498 610 046 189 546 416 111 616 × 2 = 0 + 0.000 000 000 018 189 052 997 220 092 379 092 832 223 232;
  • 92) 0.000 000 000 018 189 052 997 220 092 379 092 832 223 232 × 2 = 0 + 0.000 000 000 036 378 105 994 440 184 758 185 664 446 464;
  • 93) 0.000 000 000 036 378 105 994 440 184 758 185 664 446 464 × 2 = 0 + 0.000 000 000 072 756 211 988 880 369 516 371 328 892 928;
  • 94) 0.000 000 000 072 756 211 988 880 369 516 371 328 892 928 × 2 = 0 + 0.000 000 000 145 512 423 977 760 739 032 742 657 785 856;
  • 95) 0.000 000 000 145 512 423 977 760 739 032 742 657 785 856 × 2 = 0 + 0.000 000 000 291 024 847 955 521 478 065 485 315 571 712;
  • 96) 0.000 000 000 291 024 847 955 521 478 065 485 315 571 712 × 2 = 0 + 0.000 000 000 582 049 695 911 042 956 130 970 631 143 424;
  • 97) 0.000 000 000 582 049 695 911 042 956 130 970 631 143 424 × 2 = 0 + 0.000 000 001 164 099 391 822 085 912 261 941 262 286 848;
  • 98) 0.000 000 001 164 099 391 822 085 912 261 941 262 286 848 × 2 = 0 + 0.000 000 002 328 198 783 644 171 824 523 882 524 573 696;
  • 99) 0.000 000 002 328 198 783 644 171 824 523 882 524 573 696 × 2 = 0 + 0.000 000 004 656 397 567 288 343 649 047 765 049 147 392;
  • 100) 0.000 000 004 656 397 567 288 343 649 047 765 049 147 392 × 2 = 0 + 0.000 000 009 312 795 134 576 687 298 095 530 098 294 784;
  • 101) 0.000 000 009 312 795 134 576 687 298 095 530 098 294 784 × 2 = 0 + 0.000 000 018 625 590 269 153 374 596 191 060 196 589 568;
  • 102) 0.000 000 018 625 590 269 153 374 596 191 060 196 589 568 × 2 = 0 + 0.000 000 037 251 180 538 306 749 192 382 120 393 179 136;
  • 103) 0.000 000 037 251 180 538 306 749 192 382 120 393 179 136 × 2 = 0 + 0.000 000 074 502 361 076 613 498 384 764 240 786 358 272;
  • 104) 0.000 000 074 502 361 076 613 498 384 764 240 786 358 272 × 2 = 0 + 0.000 000 149 004 722 153 226 996 769 528 481 572 716 544;
  • 105) 0.000 000 149 004 722 153 226 996 769 528 481 572 716 544 × 2 = 0 + 0.000 000 298 009 444 306 453 993 539 056 963 145 433 088;
  • 106) 0.000 000 298 009 444 306 453 993 539 056 963 145 433 088 × 2 = 0 + 0.000 000 596 018 888 612 907 987 078 113 926 290 866 176;
  • 107) 0.000 000 596 018 888 612 907 987 078 113 926 290 866 176 × 2 = 0 + 0.000 001 192 037 777 225 815 974 156 227 852 581 732 352;
  • 108) 0.000 001 192 037 777 225 815 974 156 227 852 581 732 352 × 2 = 0 + 0.000 002 384 075 554 451 631 948 312 455 705 163 464 704;
  • 109) 0.000 002 384 075 554 451 631 948 312 455 705 163 464 704 × 2 = 0 + 0.000 004 768 151 108 903 263 896 624 911 410 326 929 408;
  • 110) 0.000 004 768 151 108 903 263 896 624 911 410 326 929 408 × 2 = 0 + 0.000 009 536 302 217 806 527 793 249 822 820 653 858 816;
  • 111) 0.000 009 536 302 217 806 527 793 249 822 820 653 858 816 × 2 = 0 + 0.000 019 072 604 435 613 055 586 499 645 641 307 717 632;
  • 112) 0.000 019 072 604 435 613 055 586 499 645 641 307 717 632 × 2 = 0 + 0.000 038 145 208 871 226 111 172 999 291 282 615 435 264;
  • 113) 0.000 038 145 208 871 226 111 172 999 291 282 615 435 264 × 2 = 0 + 0.000 076 290 417 742 452 222 345 998 582 565 230 870 528;
  • 114) 0.000 076 290 417 742 452 222 345 998 582 565 230 870 528 × 2 = 0 + 0.000 152 580 835 484 904 444 691 997 165 130 461 741 056;
  • 115) 0.000 152 580 835 484 904 444 691 997 165 130 461 741 056 × 2 = 0 + 0.000 305 161 670 969 808 889 383 994 330 260 923 482 112;
  • 116) 0.000 305 161 670 969 808 889 383 994 330 260 923 482 112 × 2 = 0 + 0.000 610 323 341 939 617 778 767 988 660 521 846 964 224;
  • 117) 0.000 610 323 341 939 617 778 767 988 660 521 846 964 224 × 2 = 0 + 0.001 220 646 683 879 235 557 535 977 321 043 693 928 448;
  • 118) 0.001 220 646 683 879 235 557 535 977 321 043 693 928 448 × 2 = 0 + 0.002 441 293 367 758 471 115 071 954 642 087 387 856 896;
  • 119) 0.002 441 293 367 758 471 115 071 954 642 087 387 856 896 × 2 = 0 + 0.004 882 586 735 516 942 230 143 909 284 174 775 713 792;
  • 120) 0.004 882 586 735 516 942 230 143 909 284 174 775 713 792 × 2 = 0 + 0.009 765 173 471 033 884 460 287 818 568 349 551 427 584;
  • 121) 0.009 765 173 471 033 884 460 287 818 568 349 551 427 584 × 2 = 0 + 0.019 530 346 942 067 768 920 575 637 136 699 102 855 168;
  • 122) 0.019 530 346 942 067 768 920 575 637 136 699 102 855 168 × 2 = 0 + 0.039 060 693 884 135 537 841 151 274 273 398 205 710 336;
  • 123) 0.039 060 693 884 135 537 841 151 274 273 398 205 710 336 × 2 = 0 + 0.078 121 387 768 271 075 682 302 548 546 796 411 420 672;
  • 124) 0.078 121 387 768 271 075 682 302 548 546 796 411 420 672 × 2 = 0 + 0.156 242 775 536 542 151 364 605 097 093 592 822 841 344;
  • 125) 0.156 242 775 536 542 151 364 605 097 093 592 822 841 344 × 2 = 0 + 0.312 485 551 073 084 302 729 210 194 187 185 645 682 688;
  • 126) 0.312 485 551 073 084 302 729 210 194 187 185 645 682 688 × 2 = 0 + 0.624 971 102 146 168 605 458 420 388 374 371 291 365 376;
  • 127) 0.624 971 102 146 168 605 458 420 388 374 371 291 365 376 × 2 = 1 + 0.249 942 204 292 337 210 916 840 776 748 742 582 730 752;
  • 128) 0.249 942 204 292 337 210 916 840 776 748 742 582 730 752 × 2 = 0 + 0.499 884 408 584 674 421 833 681 553 497 485 165 461 504;
  • 129) 0.499 884 408 584 674 421 833 681 553 497 485 165 461 504 × 2 = 0 + 0.999 768 817 169 348 843 667 363 106 994 970 330 923 008;
  • 130) 0.999 768 817 169 348 843 667 363 106 994 970 330 923 008 × 2 = 1 + 0.999 537 634 338 697 687 334 726 213 989 940 661 846 016;
  • 131) 0.999 537 634 338 697 687 334 726 213 989 940 661 846 016 × 2 = 1 + 0.999 075 268 677 395 374 669 452 427 979 881 323 692 032;
  • 132) 0.999 075 268 677 395 374 669 452 427 979 881 323 692 032 × 2 = 1 + 0.998 150 537 354 790 749 338 904 855 959 762 647 384 064;
  • 133) 0.998 150 537 354 790 749 338 904 855 959 762 647 384 064 × 2 = 1 + 0.996 301 074 709 581 498 677 809 711 919 525 294 768 128;
  • 134) 0.996 301 074 709 581 498 677 809 711 919 525 294 768 128 × 2 = 1 + 0.992 602 149 419 162 997 355 619 423 839 050 589 536 256;
  • 135) 0.992 602 149 419 162 997 355 619 423 839 050 589 536 256 × 2 = 1 + 0.985 204 298 838 325 994 711 238 847 678 101 179 072 512;
  • 136) 0.985 204 298 838 325 994 711 238 847 678 101 179 072 512 × 2 = 1 + 0.970 408 597 676 651 989 422 477 695 356 202 358 145 024;
  • 137) 0.970 408 597 676 651 989 422 477 695 356 202 358 145 024 × 2 = 1 + 0.940 817 195 353 303 978 844 955 390 712 404 716 290 048;
  • 138) 0.940 817 195 353 303 978 844 955 390 712 404 716 290 048 × 2 = 1 + 0.881 634 390 706 607 957 689 910 781 424 809 432 580 096;
  • 139) 0.881 634 390 706 607 957 689 910 781 424 809 432 580 096 × 2 = 1 + 0.763 268 781 413 215 915 379 821 562 849 618 865 160 192;
  • 140) 0.763 268 781 413 215 915 379 821 562 849 618 865 160 192 × 2 = 1 + 0.526 537 562 826 431 830 759 643 125 699 237 730 320 384;
  • 141) 0.526 537 562 826 431 830 759 643 125 699 237 730 320 384 × 2 = 1 + 0.053 075 125 652 863 661 519 286 251 398 475 460 640 768;
  • 142) 0.053 075 125 652 863 661 519 286 251 398 475 460 640 768 × 2 = 0 + 0.106 150 251 305 727 323 038 572 502 796 950 921 281 536;
  • 143) 0.106 150 251 305 727 323 038 572 502 796 950 921 281 536 × 2 = 0 + 0.212 300 502 611 454 646 077 145 005 593 901 842 563 072;
  • 144) 0.212 300 502 611 454 646 077 145 005 593 901 842 563 072 × 2 = 0 + 0.424 601 005 222 909 292 154 290 011 187 803 685 126 144;
  • 145) 0.424 601 005 222 909 292 154 290 011 187 803 685 126 144 × 2 = 0 + 0.849 202 010 445 818 584 308 580 022 375 607 370 252 288;
  • 146) 0.849 202 010 445 818 584 308 580 022 375 607 370 252 288 × 2 = 1 + 0.698 404 020 891 637 168 617 160 044 751 214 740 504 576;
  • 147) 0.698 404 020 891 637 168 617 160 044 751 214 740 504 576 × 2 = 1 + 0.396 808 041 783 274 337 234 320 089 502 429 481 009 152;
  • 148) 0.396 808 041 783 274 337 234 320 089 502 429 481 009 152 × 2 = 0 + 0.793 616 083 566 548 674 468 640 179 004 858 962 018 304;
  • 149) 0.793 616 083 566 548 674 468 640 179 004 858 962 018 304 × 2 = 1 + 0.587 232 167 133 097 348 937 280 358 009 717 924 036 608;
  • 150) 0.587 232 167 133 097 348 937 280 358 009 717 924 036 608 × 2 = 1 + 0.174 464 334 266 194 697 874 560 716 019 435 848 073 216;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (Losing precision - the converted number we get in the end will be just a very good approximation of the initial one).


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.000 000 000 000 000 000 000 000 000 000 000 000 007 346 5(10) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010 0111 1111 1111 1000 0110 11(2)

5. Positive number before normalization:

0.000 000 000 000 000 000 000 000 000 000 000 000 007 346 5(10) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010 0111 1111 1111 1000 0110 11(2)

6. Normalize the binary representation of the number.

Shift the decimal mark 127 positions to the right, so that only one non zero digit remains to the left of it:


0.000 000 000 000 000 000 000 000 000 000 000 000 007 346 5(10) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010 0111 1111 1111 1000 0110 11(2) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010 0111 1111 1111 1000 0110 11(2) × 20 =


1.0011 1111 1111 1100 0011 011(2) × 2-127


7. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): -127


Mantissa (not normalized):
1.0011 1111 1111 1100 0011 011


8. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


-127 + 2(8-1) - 1 =


(-127 + 127)(10) =


0(10)


9. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 0 ÷ 2 = 0 + 0;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


0(10) =


0000 0000(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, only if necessary (not the case here).


Mantissa (normalized) =


1. 001 1111 1111 1110 0001 1011 =


001 1111 1111 1110 0001 1011


12. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
0000 0000


Mantissa (23 bits) =
001 1111 1111 1110 0001 1011


The base ten decimal number 0.000 000 000 000 000 000 000 000 000 000 000 000 007 346 5 converted and written in 32 bit single precision IEEE 754 binary floating point representation:

0 - 0000 0000 - 001 1111 1111 1110 0001 1011

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111