Convert the Number -8 388 599 to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number. Detailed Explanations

Number -8 388 599(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (base 2) the integer number.


1. Start with the positive version of the number:

|-8 388 599| = 8 388 599

2. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 8 388 599 ÷ 2 = 4 194 299 + 1;
  • 4 194 299 ÷ 2 = 2 097 149 + 1;
  • 2 097 149 ÷ 2 = 1 048 574 + 1;
  • 1 048 574 ÷ 2 = 524 287 + 0;
  • 524 287 ÷ 2 = 262 143 + 1;
  • 262 143 ÷ 2 = 131 071 + 1;
  • 131 071 ÷ 2 = 65 535 + 1;
  • 65 535 ÷ 2 = 32 767 + 1;
  • 32 767 ÷ 2 = 16 383 + 1;
  • 16 383 ÷ 2 = 8 191 + 1;
  • 8 191 ÷ 2 = 4 095 + 1;
  • 4 095 ÷ 2 = 2 047 + 1;
  • 2 047 ÷ 2 = 1 023 + 1;
  • 1 023 ÷ 2 = 511 + 1;
  • 511 ÷ 2 = 255 + 1;
  • 255 ÷ 2 = 127 + 1;
  • 127 ÷ 2 = 63 + 1;
  • 63 ÷ 2 = 31 + 1;
  • 31 ÷ 2 = 15 + 1;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

3. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


8 388 599(10) =


111 1111 1111 1111 1111 0111(2)



The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


4. Normalize the binary representation of the number.

Shift the decimal mark 22 positions to the left, so that only one non zero digit remains to the left of it:


8 388 599(10) =


111 1111 1111 1111 1111 0111(2) =


111 1111 1111 1111 1111 0111(2) × 20 =


1.1111 1111 1111 1111 1101 11(2) × 222


5. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 1 (a negative number)


Exponent (unadjusted): 22


Mantissa (not normalized):
1.1111 1111 1111 1111 1101 11


6. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


22 + 2(8-1) - 1 =


(22 + 127)(10) =


149(10)


7. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 149 ÷ 2 = 74 + 1;
  • 74 ÷ 2 = 37 + 0;
  • 37 ÷ 2 = 18 + 1;
  • 18 ÷ 2 = 9 + 0;
  • 9 ÷ 2 = 4 + 1;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

8. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


149(10) =


1001 0101(2)


9. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by adding the necessary number of zeros to the right.


Mantissa (normalized) =


1. 11 1111 1111 1111 1111 0111 0 =


111 1111 1111 1111 1110 1110


10. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
1 (a negative number)


Exponent (8 bits) =
1001 0101


Mantissa (23 bits) =
111 1111 1111 1111 1110 1110


The base ten decimal number -8 388 599 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
1 - 1001 0101 - 111 1111 1111 1111 1110 1110

(32 bits IEEE 754)

Number -8 388 600 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point representation = ?

Number -8 388 598 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point representation = ?

Convert to 32 bit single precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number -8 388 599 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 13:35 UTC (GMT)
Number -456.28 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 13:35 UTC (GMT)
Number 2.160 119 311 421 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 13:35 UTC (GMT)
Number 0.031 415 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 13:35 UTC (GMT)
Number 160 027 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 13:35 UTC (GMT)
Number -7 163.128 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 13:35 UTC (GMT)
Number 1.414 29 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 13:35 UTC (GMT)
Number 170 141 183 460 469 231 731 687 303 715 884 105 689 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 13:35 UTC (GMT)
Number 34 789.2 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 13:35 UTC (GMT)
Number 12 300 000 000 000 000 000 000 000 009 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 13:35 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal