32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: -63 219 999 999 999 999 999 999 999 999 993 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number -63 219 999 999 999 999 999 999 999 999 993(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Start with the positive version of the number:

|-63 219 999 999 999 999 999 999 999 999 993| = 63 219 999 999 999 999 999 999 999 999 993

2. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 63 219 999 999 999 999 999 999 999 999 993 ÷ 2 = 31 609 999 999 999 999 999 999 999 999 996 + 1;
  • 31 609 999 999 999 999 999 999 999 999 996 ÷ 2 = 15 804 999 999 999 999 999 999 999 999 998 + 0;
  • 15 804 999 999 999 999 999 999 999 999 998 ÷ 2 = 7 902 499 999 999 999 999 999 999 999 999 + 0;
  • 7 902 499 999 999 999 999 999 999 999 999 ÷ 2 = 3 951 249 999 999 999 999 999 999 999 999 + 1;
  • 3 951 249 999 999 999 999 999 999 999 999 ÷ 2 = 1 975 624 999 999 999 999 999 999 999 999 + 1;
  • 1 975 624 999 999 999 999 999 999 999 999 ÷ 2 = 987 812 499 999 999 999 999 999 999 999 + 1;
  • 987 812 499 999 999 999 999 999 999 999 ÷ 2 = 493 906 249 999 999 999 999 999 999 999 + 1;
  • 493 906 249 999 999 999 999 999 999 999 ÷ 2 = 246 953 124 999 999 999 999 999 999 999 + 1;
  • 246 953 124 999 999 999 999 999 999 999 ÷ 2 = 123 476 562 499 999 999 999 999 999 999 + 1;
  • 123 476 562 499 999 999 999 999 999 999 ÷ 2 = 61 738 281 249 999 999 999 999 999 999 + 1;
  • 61 738 281 249 999 999 999 999 999 999 ÷ 2 = 30 869 140 624 999 999 999 999 999 999 + 1;
  • 30 869 140 624 999 999 999 999 999 999 ÷ 2 = 15 434 570 312 499 999 999 999 999 999 + 1;
  • 15 434 570 312 499 999 999 999 999 999 ÷ 2 = 7 717 285 156 249 999 999 999 999 999 + 1;
  • 7 717 285 156 249 999 999 999 999 999 ÷ 2 = 3 858 642 578 124 999 999 999 999 999 + 1;
  • 3 858 642 578 124 999 999 999 999 999 ÷ 2 = 1 929 321 289 062 499 999 999 999 999 + 1;
  • 1 929 321 289 062 499 999 999 999 999 ÷ 2 = 964 660 644 531 249 999 999 999 999 + 1;
  • 964 660 644 531 249 999 999 999 999 ÷ 2 = 482 330 322 265 624 999 999 999 999 + 1;
  • 482 330 322 265 624 999 999 999 999 ÷ 2 = 241 165 161 132 812 499 999 999 999 + 1;
  • 241 165 161 132 812 499 999 999 999 ÷ 2 = 120 582 580 566 406 249 999 999 999 + 1;
  • 120 582 580 566 406 249 999 999 999 ÷ 2 = 60 291 290 283 203 124 999 999 999 + 1;
  • 60 291 290 283 203 124 999 999 999 ÷ 2 = 30 145 645 141 601 562 499 999 999 + 1;
  • 30 145 645 141 601 562 499 999 999 ÷ 2 = 15 072 822 570 800 781 249 999 999 + 1;
  • 15 072 822 570 800 781 249 999 999 ÷ 2 = 7 536 411 285 400 390 624 999 999 + 1;
  • 7 536 411 285 400 390 624 999 999 ÷ 2 = 3 768 205 642 700 195 312 499 999 + 1;
  • 3 768 205 642 700 195 312 499 999 ÷ 2 = 1 884 102 821 350 097 656 249 999 + 1;
  • 1 884 102 821 350 097 656 249 999 ÷ 2 = 942 051 410 675 048 828 124 999 + 1;
  • 942 051 410 675 048 828 124 999 ÷ 2 = 471 025 705 337 524 414 062 499 + 1;
  • 471 025 705 337 524 414 062 499 ÷ 2 = 235 512 852 668 762 207 031 249 + 1;
  • 235 512 852 668 762 207 031 249 ÷ 2 = 117 756 426 334 381 103 515 624 + 1;
  • 117 756 426 334 381 103 515 624 ÷ 2 = 58 878 213 167 190 551 757 812 + 0;
  • 58 878 213 167 190 551 757 812 ÷ 2 = 29 439 106 583 595 275 878 906 + 0;
  • 29 439 106 583 595 275 878 906 ÷ 2 = 14 719 553 291 797 637 939 453 + 0;
  • 14 719 553 291 797 637 939 453 ÷ 2 = 7 359 776 645 898 818 969 726 + 1;
  • 7 359 776 645 898 818 969 726 ÷ 2 = 3 679 888 322 949 409 484 863 + 0;
  • 3 679 888 322 949 409 484 863 ÷ 2 = 1 839 944 161 474 704 742 431 + 1;
  • 1 839 944 161 474 704 742 431 ÷ 2 = 919 972 080 737 352 371 215 + 1;
  • 919 972 080 737 352 371 215 ÷ 2 = 459 986 040 368 676 185 607 + 1;
  • 459 986 040 368 676 185 607 ÷ 2 = 229 993 020 184 338 092 803 + 1;
  • 229 993 020 184 338 092 803 ÷ 2 = 114 996 510 092 169 046 401 + 1;
  • 114 996 510 092 169 046 401 ÷ 2 = 57 498 255 046 084 523 200 + 1;
  • 57 498 255 046 084 523 200 ÷ 2 = 28 749 127 523 042 261 600 + 0;
  • 28 749 127 523 042 261 600 ÷ 2 = 14 374 563 761 521 130 800 + 0;
  • 14 374 563 761 521 130 800 ÷ 2 = 7 187 281 880 760 565 400 + 0;
  • 7 187 281 880 760 565 400 ÷ 2 = 3 593 640 940 380 282 700 + 0;
  • 3 593 640 940 380 282 700 ÷ 2 = 1 796 820 470 190 141 350 + 0;
  • 1 796 820 470 190 141 350 ÷ 2 = 898 410 235 095 070 675 + 0;
  • 898 410 235 095 070 675 ÷ 2 = 449 205 117 547 535 337 + 1;
  • 449 205 117 547 535 337 ÷ 2 = 224 602 558 773 767 668 + 1;
  • 224 602 558 773 767 668 ÷ 2 = 112 301 279 386 883 834 + 0;
  • 112 301 279 386 883 834 ÷ 2 = 56 150 639 693 441 917 + 0;
  • 56 150 639 693 441 917 ÷ 2 = 28 075 319 846 720 958 + 1;
  • 28 075 319 846 720 958 ÷ 2 = 14 037 659 923 360 479 + 0;
  • 14 037 659 923 360 479 ÷ 2 = 7 018 829 961 680 239 + 1;
  • 7 018 829 961 680 239 ÷ 2 = 3 509 414 980 840 119 + 1;
  • 3 509 414 980 840 119 ÷ 2 = 1 754 707 490 420 059 + 1;
  • 1 754 707 490 420 059 ÷ 2 = 877 353 745 210 029 + 1;
  • 877 353 745 210 029 ÷ 2 = 438 676 872 605 014 + 1;
  • 438 676 872 605 014 ÷ 2 = 219 338 436 302 507 + 0;
  • 219 338 436 302 507 ÷ 2 = 109 669 218 151 253 + 1;
  • 109 669 218 151 253 ÷ 2 = 54 834 609 075 626 + 1;
  • 54 834 609 075 626 ÷ 2 = 27 417 304 537 813 + 0;
  • 27 417 304 537 813 ÷ 2 = 13 708 652 268 906 + 1;
  • 13 708 652 268 906 ÷ 2 = 6 854 326 134 453 + 0;
  • 6 854 326 134 453 ÷ 2 = 3 427 163 067 226 + 1;
  • 3 427 163 067 226 ÷ 2 = 1 713 581 533 613 + 0;
  • 1 713 581 533 613 ÷ 2 = 856 790 766 806 + 1;
  • 856 790 766 806 ÷ 2 = 428 395 383 403 + 0;
  • 428 395 383 403 ÷ 2 = 214 197 691 701 + 1;
  • 214 197 691 701 ÷ 2 = 107 098 845 850 + 1;
  • 107 098 845 850 ÷ 2 = 53 549 422 925 + 0;
  • 53 549 422 925 ÷ 2 = 26 774 711 462 + 1;
  • 26 774 711 462 ÷ 2 = 13 387 355 731 + 0;
  • 13 387 355 731 ÷ 2 = 6 693 677 865 + 1;
  • 6 693 677 865 ÷ 2 = 3 346 838 932 + 1;
  • 3 346 838 932 ÷ 2 = 1 673 419 466 + 0;
  • 1 673 419 466 ÷ 2 = 836 709 733 + 0;
  • 836 709 733 ÷ 2 = 418 354 866 + 1;
  • 418 354 866 ÷ 2 = 209 177 433 + 0;
  • 209 177 433 ÷ 2 = 104 588 716 + 1;
  • 104 588 716 ÷ 2 = 52 294 358 + 0;
  • 52 294 358 ÷ 2 = 26 147 179 + 0;
  • 26 147 179 ÷ 2 = 13 073 589 + 1;
  • 13 073 589 ÷ 2 = 6 536 794 + 1;
  • 6 536 794 ÷ 2 = 3 268 397 + 0;
  • 3 268 397 ÷ 2 = 1 634 198 + 1;
  • 1 634 198 ÷ 2 = 817 099 + 0;
  • 817 099 ÷ 2 = 408 549 + 1;
  • 408 549 ÷ 2 = 204 274 + 1;
  • 204 274 ÷ 2 = 102 137 + 0;
  • 102 137 ÷ 2 = 51 068 + 1;
  • 51 068 ÷ 2 = 25 534 + 0;
  • 25 534 ÷ 2 = 12 767 + 0;
  • 12 767 ÷ 2 = 6 383 + 1;
  • 6 383 ÷ 2 = 3 191 + 1;
  • 3 191 ÷ 2 = 1 595 + 1;
  • 1 595 ÷ 2 = 797 + 1;
  • 797 ÷ 2 = 398 + 1;
  • 398 ÷ 2 = 199 + 0;
  • 199 ÷ 2 = 99 + 1;
  • 99 ÷ 2 = 49 + 1;
  • 49 ÷ 2 = 24 + 1;
  • 24 ÷ 2 = 12 + 0;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

3. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


63 219 999 999 999 999 999 999 999 999 993(10) =


11 0001 1101 1111 0010 1101 0110 0101 0011 0101 1010 1010 1101 1111 0100 1100 0000 1111 1101 0001 1111 1111 1111 1111 1111 1111 1001(2)


4. Normalize the binary representation of the number.

Shift the decimal mark 105 positions to the left, so that only one non zero digit remains to the left of it:


63 219 999 999 999 999 999 999 999 999 993(10) =


11 0001 1101 1111 0010 1101 0110 0101 0011 0101 1010 1010 1101 1111 0100 1100 0000 1111 1101 0001 1111 1111 1111 1111 1111 1111 1001(2) =


11 0001 1101 1111 0010 1101 0110 0101 0011 0101 1010 1010 1101 1111 0100 1100 0000 1111 1101 0001 1111 1111 1111 1111 1111 1111 1001(2) × 20 =


1.1000 1110 1111 1001 0110 1011 0010 1001 1010 1101 0101 0110 1111 1010 0110 0000 0111 1110 1000 1111 1111 1111 1111 1111 1111 1100 1(2) × 2105


5. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 1 (a negative number)


Exponent (unadjusted): 105


Mantissa (not normalized):
1.1000 1110 1111 1001 0110 1011 0010 1001 1010 1101 0101 0110 1111 1010 0110 0000 0111 1110 1000 1111 1111 1111 1111 1111 1111 1100 1


6. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


105 + 2(8-1) - 1 =


(105 + 127)(10) =


232(10)


7. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 232 ÷ 2 = 116 + 0;
  • 116 ÷ 2 = 58 + 0;
  • 58 ÷ 2 = 29 + 0;
  • 29 ÷ 2 = 14 + 1;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

8. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


232(10) =


1110 1000(2)


9. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 100 0111 0111 1100 1011 0101 10 0101 0011 0101 1010 1010 1101 1111 0100 1100 0000 1111 1101 0001 1111 1111 1111 1111 1111 1111 1001 =


100 0111 0111 1100 1011 0101


10. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
1 (a negative number)


Exponent (8 bits) =
1110 1000


Mantissa (23 bits) =
100 0111 0111 1100 1011 0101


The base ten decimal number -63 219 999 999 999 999 999 999 999 999 993 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
1 - 1110 1000 - 100 0111 0111 1100 1011 0101

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 4 294 965 455 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 19 09:25 UTC (GMT)
Number 6 814 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 19 09:25 UTC (GMT)
Number 3 247 701 997 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 19 09:25 UTC (GMT)
Number -88.828 7 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 19 09:25 UTC (GMT)
Number -97 529 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 19 09:25 UTC (GMT)
Number 144 226 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 19 09:25 UTC (GMT)
Number 696 423 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 19 09:25 UTC (GMT)
Number 0.675 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 19 09:25 UTC (GMT)
Number 4 279 802 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 19 09:25 UTC (GMT)
Number 3 233 677 328 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 19 09:25 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111