Convert the Number -0.571 428 571 7 to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number. Detailed Explanations

Number -0.571 428 571 7(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

The first steps we'll go through to make the conversion:

Convert to binary (to base 2) the integer part of the number.

Convert to binary the fractional part of the number.


1. Start with the positive version of the number:

|-0.571 428 571 7| = 0.571 428 571 7

2. First, convert to binary (in base 2) the integer part: 0.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 0 ÷ 2 = 0 + 0;

3. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


0(10) =


0(2)


4. Convert to binary (base 2) the fractional part: 0.571 428 571 7.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.571 428 571 7 × 2 = 1 + 0.142 857 143 4;
  • 2) 0.142 857 143 4 × 2 = 0 + 0.285 714 286 8;
  • 3) 0.285 714 286 8 × 2 = 0 + 0.571 428 573 6;
  • 4) 0.571 428 573 6 × 2 = 1 + 0.142 857 147 2;
  • 5) 0.142 857 147 2 × 2 = 0 + 0.285 714 294 4;
  • 6) 0.285 714 294 4 × 2 = 0 + 0.571 428 588 8;
  • 7) 0.571 428 588 8 × 2 = 1 + 0.142 857 177 6;
  • 8) 0.142 857 177 6 × 2 = 0 + 0.285 714 355 2;
  • 9) 0.285 714 355 2 × 2 = 0 + 0.571 428 710 4;
  • 10) 0.571 428 710 4 × 2 = 1 + 0.142 857 420 8;
  • 11) 0.142 857 420 8 × 2 = 0 + 0.285 714 841 6;
  • 12) 0.285 714 841 6 × 2 = 0 + 0.571 429 683 2;
  • 13) 0.571 429 683 2 × 2 = 1 + 0.142 859 366 4;
  • 14) 0.142 859 366 4 × 2 = 0 + 0.285 718 732 8;
  • 15) 0.285 718 732 8 × 2 = 0 + 0.571 437 465 6;
  • 16) 0.571 437 465 6 × 2 = 1 + 0.142 874 931 2;
  • 17) 0.142 874 931 2 × 2 = 0 + 0.285 749 862 4;
  • 18) 0.285 749 862 4 × 2 = 0 + 0.571 499 724 8;
  • 19) 0.571 499 724 8 × 2 = 1 + 0.142 999 449 6;
  • 20) 0.142 999 449 6 × 2 = 0 + 0.285 998 899 2;
  • 21) 0.285 998 899 2 × 2 = 0 + 0.571 997 798 4;
  • 22) 0.571 997 798 4 × 2 = 1 + 0.143 995 596 8;
  • 23) 0.143 995 596 8 × 2 = 0 + 0.287 991 193 6;
  • 24) 0.287 991 193 6 × 2 = 0 + 0.575 982 387 2;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


5. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.571 428 571 7(10) =


0.1001 0010 0100 1001 0010 0100(2)


6. Positive number before normalization:

0.571 428 571 7(10) =


0.1001 0010 0100 1001 0010 0100(2)


The last steps we'll go through to make the conversion:

Normalize the binary representation of the number.

Adjust the exponent.

Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Normalize the mantissa.


7. Normalize the binary representation of the number.

Shift the decimal mark 1 positions to the right, so that only one non zero digit remains to the left of it:


0.571 428 571 7(10) =


0.1001 0010 0100 1001 0010 0100(2) =


0.1001 0010 0100 1001 0010 0100(2) × 20 =


1.0010 0100 1001 0010 0100 100(2) × 2-1


8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 1 (a negative number)


Exponent (unadjusted): -1


Mantissa (not normalized):
1.0010 0100 1001 0010 0100 100


9. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


-1 + 2(8-1) - 1 =


(-1 + 127)(10) =


126(10)


10. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 126 ÷ 2 = 63 + 0;
  • 63 ÷ 2 = 31 + 1;
  • 31 ÷ 2 = 15 + 1;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

11. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


126(10) =


0111 1110(2)


12. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, only if necessary (not the case here).


Mantissa (normalized) =


1. 001 0010 0100 1001 0010 0100 =


001 0010 0100 1001 0010 0100


13. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
1 (a negative number)


Exponent (8 bits) =
0111 1110


Mantissa (23 bits) =
001 0010 0100 1001 0010 0100


The base ten decimal number -0.571 428 571 7 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
1 - 0111 1110 - 001 0010 0100 1001 0010 0100

(32 bits IEEE 754)

Number -0.571 428 571 8 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point representation = ?

Number -0.571 428 571 6 converted from decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point representation = ?

Convert to 32 bit single precision IEEE 754 binary floating point representation standard

A number in 64 bit double precision IEEE 754 binary floating point standard representation requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number -0.571 428 571 7 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:17 UTC (GMT)
Number 1 655 119 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:17 UTC (GMT)
Number 1 447 608 309 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:17 UTC (GMT)
Number 847.8 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:17 UTC (GMT)
Number 42 072 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:17 UTC (GMT)
Number 5 549 512 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:17 UTC (GMT)
Number 9.666 666 661 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:17 UTC (GMT)
Number 64 214 211 813 231 141 126 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:17 UTC (GMT)
Number 500 000 000 007 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:17 UTC (GMT)
Number 263.299 987 792 4 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Oct 03 15:17 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal