32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: -0.000 452 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number -0.000 452(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Start with the positive version of the number:

|-0.000 452| = 0.000 452

2. First, convert to binary (in base 2) the integer part: 0.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 0 ÷ 2 = 0 + 0;

3. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


0(10) =


0(2)


4. Convert to binary (base 2) the fractional part: 0.000 452.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.000 452 × 2 = 0 + 0.000 904;
  • 2) 0.000 904 × 2 = 0 + 0.001 808;
  • 3) 0.001 808 × 2 = 0 + 0.003 616;
  • 4) 0.003 616 × 2 = 0 + 0.007 232;
  • 5) 0.007 232 × 2 = 0 + 0.014 464;
  • 6) 0.014 464 × 2 = 0 + 0.028 928;
  • 7) 0.028 928 × 2 = 0 + 0.057 856;
  • 8) 0.057 856 × 2 = 0 + 0.115 712;
  • 9) 0.115 712 × 2 = 0 + 0.231 424;
  • 10) 0.231 424 × 2 = 0 + 0.462 848;
  • 11) 0.462 848 × 2 = 0 + 0.925 696;
  • 12) 0.925 696 × 2 = 1 + 0.851 392;
  • 13) 0.851 392 × 2 = 1 + 0.702 784;
  • 14) 0.702 784 × 2 = 1 + 0.405 568;
  • 15) 0.405 568 × 2 = 0 + 0.811 136;
  • 16) 0.811 136 × 2 = 1 + 0.622 272;
  • 17) 0.622 272 × 2 = 1 + 0.244 544;
  • 18) 0.244 544 × 2 = 0 + 0.489 088;
  • 19) 0.489 088 × 2 = 0 + 0.978 176;
  • 20) 0.978 176 × 2 = 1 + 0.956 352;
  • 21) 0.956 352 × 2 = 1 + 0.912 704;
  • 22) 0.912 704 × 2 = 1 + 0.825 408;
  • 23) 0.825 408 × 2 = 1 + 0.650 816;
  • 24) 0.650 816 × 2 = 1 + 0.301 632;
  • 25) 0.301 632 × 2 = 0 + 0.603 264;
  • 26) 0.603 264 × 2 = 1 + 0.206 528;
  • 27) 0.206 528 × 2 = 0 + 0.413 056;
  • 28) 0.413 056 × 2 = 0 + 0.826 112;
  • 29) 0.826 112 × 2 = 1 + 0.652 224;
  • 30) 0.652 224 × 2 = 1 + 0.304 448;
  • 31) 0.304 448 × 2 = 0 + 0.608 896;
  • 32) 0.608 896 × 2 = 1 + 0.217 792;
  • 33) 0.217 792 × 2 = 0 + 0.435 584;
  • 34) 0.435 584 × 2 = 0 + 0.871 168;
  • 35) 0.871 168 × 2 = 1 + 0.742 336;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


5. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.000 452(10) =


0.0000 0000 0001 1101 1001 1111 0100 1101 001(2)


6. Positive number before normalization:

0.000 452(10) =


0.0000 0000 0001 1101 1001 1111 0100 1101 001(2)

7. Normalize the binary representation of the number.

Shift the decimal mark 12 positions to the right, so that only one non zero digit remains to the left of it:


0.000 452(10) =


0.0000 0000 0001 1101 1001 1111 0100 1101 001(2) =


0.0000 0000 0001 1101 1001 1111 0100 1101 001(2) × 20 =


1.1101 1001 1111 0100 1101 001(2) × 2-12


8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 1 (a negative number)


Exponent (unadjusted): -12


Mantissa (not normalized):
1.1101 1001 1111 0100 1101 001


9. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


-12 + 2(8-1) - 1 =


(-12 + 127)(10) =


115(10)


10. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 115 ÷ 2 = 57 + 1;
  • 57 ÷ 2 = 28 + 1;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

11. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


115(10) =


0111 0011(2)


12. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, only if necessary (not the case here).


Mantissa (normalized) =


1. 110 1100 1111 1010 0110 1001 =


110 1100 1111 1010 0110 1001


13. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
1 (a negative number)


Exponent (8 bits) =
0111 0011


Mantissa (23 bits) =
110 1100 1111 1010 0110 1001


The base ten decimal number -0.000 452 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
1 - 0111 0011 - 110 1100 1111 1010 0110 1001

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation