1. Divide the number repeatedly by 2:
Keep track of each remainder.
We stop when we get a quotient that is equal to zero.
- division = quotient + remainder;
- 8 796 093 022 203 ÷ 2 = 4 398 046 511 101 + 1;
- 4 398 046 511 101 ÷ 2 = 2 199 023 255 550 + 1;
- 2 199 023 255 550 ÷ 2 = 1 099 511 627 775 + 0;
- 1 099 511 627 775 ÷ 2 = 549 755 813 887 + 1;
- 549 755 813 887 ÷ 2 = 274 877 906 943 + 1;
- 274 877 906 943 ÷ 2 = 137 438 953 471 + 1;
- 137 438 953 471 ÷ 2 = 68 719 476 735 + 1;
- 68 719 476 735 ÷ 2 = 34 359 738 367 + 1;
- 34 359 738 367 ÷ 2 = 17 179 869 183 + 1;
- 17 179 869 183 ÷ 2 = 8 589 934 591 + 1;
- 8 589 934 591 ÷ 2 = 4 294 967 295 + 1;
- 4 294 967 295 ÷ 2 = 2 147 483 647 + 1;
- 2 147 483 647 ÷ 2 = 1 073 741 823 + 1;
- 1 073 741 823 ÷ 2 = 536 870 911 + 1;
- 536 870 911 ÷ 2 = 268 435 455 + 1;
- 268 435 455 ÷ 2 = 134 217 727 + 1;
- 134 217 727 ÷ 2 = 67 108 863 + 1;
- 67 108 863 ÷ 2 = 33 554 431 + 1;
- 33 554 431 ÷ 2 = 16 777 215 + 1;
- 16 777 215 ÷ 2 = 8 388 607 + 1;
- 8 388 607 ÷ 2 = 4 194 303 + 1;
- 4 194 303 ÷ 2 = 2 097 151 + 1;
- 2 097 151 ÷ 2 = 1 048 575 + 1;
- 1 048 575 ÷ 2 = 524 287 + 1;
- 524 287 ÷ 2 = 262 143 + 1;
- 262 143 ÷ 2 = 131 071 + 1;
- 131 071 ÷ 2 = 65 535 + 1;
- 65 535 ÷ 2 = 32 767 + 1;
- 32 767 ÷ 2 = 16 383 + 1;
- 16 383 ÷ 2 = 8 191 + 1;
- 8 191 ÷ 2 = 4 095 + 1;
- 4 095 ÷ 2 = 2 047 + 1;
- 2 047 ÷ 2 = 1 023 + 1;
- 1 023 ÷ 2 = 511 + 1;
- 511 ÷ 2 = 255 + 1;
- 255 ÷ 2 = 127 + 1;
- 127 ÷ 2 = 63 + 1;
- 63 ÷ 2 = 31 + 1;
- 31 ÷ 2 = 15 + 1;
- 15 ÷ 2 = 7 + 1;
- 7 ÷ 2 = 3 + 1;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
8 796 093 022 203(10) = 111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1011(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 43.
A signed binary's bit length must be equal to a power of 2, as of:
21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
The first bit (the leftmost) is reserved for the sign:
0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 43,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
4. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64:
Number 8 796 093 022 203(10), a signed integer number (with sign),
converted from decimal system (from base 10)
and written as a signed binary (in base 2):
8 796 093 022 203(10) = 0000 0000 0000 0000 0000 0111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1011
Spaces were used to group digits: for binary, by 4, for decimal, by 3.