1. Divide the number repeatedly by 2:
Keep track of each remainder.
We stop when we get a quotient that is equal to zero.
- division = quotient + remainder;
- 472 115 111 738 ÷ 2 = 236 057 555 869 + 0;
- 236 057 555 869 ÷ 2 = 118 028 777 934 + 1;
- 118 028 777 934 ÷ 2 = 59 014 388 967 + 0;
- 59 014 388 967 ÷ 2 = 29 507 194 483 + 1;
- 29 507 194 483 ÷ 2 = 14 753 597 241 + 1;
- 14 753 597 241 ÷ 2 = 7 376 798 620 + 1;
- 7 376 798 620 ÷ 2 = 3 688 399 310 + 0;
- 3 688 399 310 ÷ 2 = 1 844 199 655 + 0;
- 1 844 199 655 ÷ 2 = 922 099 827 + 1;
- 922 099 827 ÷ 2 = 461 049 913 + 1;
- 461 049 913 ÷ 2 = 230 524 956 + 1;
- 230 524 956 ÷ 2 = 115 262 478 + 0;
- 115 262 478 ÷ 2 = 57 631 239 + 0;
- 57 631 239 ÷ 2 = 28 815 619 + 1;
- 28 815 619 ÷ 2 = 14 407 809 + 1;
- 14 407 809 ÷ 2 = 7 203 904 + 1;
- 7 203 904 ÷ 2 = 3 601 952 + 0;
- 3 601 952 ÷ 2 = 1 800 976 + 0;
- 1 800 976 ÷ 2 = 900 488 + 0;
- 900 488 ÷ 2 = 450 244 + 0;
- 450 244 ÷ 2 = 225 122 + 0;
- 225 122 ÷ 2 = 112 561 + 0;
- 112 561 ÷ 2 = 56 280 + 1;
- 56 280 ÷ 2 = 28 140 + 0;
- 28 140 ÷ 2 = 14 070 + 0;
- 14 070 ÷ 2 = 7 035 + 0;
- 7 035 ÷ 2 = 3 517 + 1;
- 3 517 ÷ 2 = 1 758 + 1;
- 1 758 ÷ 2 = 879 + 0;
- 879 ÷ 2 = 439 + 1;
- 439 ÷ 2 = 219 + 1;
- 219 ÷ 2 = 109 + 1;
- 109 ÷ 2 = 54 + 1;
- 54 ÷ 2 = 27 + 0;
- 27 ÷ 2 = 13 + 1;
- 13 ÷ 2 = 6 + 1;
- 6 ÷ 2 = 3 + 0;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
472 115 111 738(10) = 110 1101 1110 1100 0100 0000 1110 0111 0011 1010(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 39.
A signed binary's bit length must be equal to a power of 2, as of:
21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
The first bit (the leftmost) is reserved for the sign:
0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 39,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
4. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64:
Number 472 115 111 738(10), a signed integer number (with sign),
converted from decimal system (from base 10)
and written as a signed binary (in base 2):
472 115 111 738(10) = 0000 0000 0000 0000 0000 0000 0110 1101 1110 1100 0100 0000 1110 0111 0011 1010
Spaces were used to group digits: for binary, by 4, for decimal, by 3.