1. Divide the number repeatedly by 2:
Keep track of each remainder.
We stop when we get a quotient that is equal to zero.
- division = quotient + remainder;
- 223 370 ÷ 2 = 111 685 + 0;
- 111 685 ÷ 2 = 55 842 + 1;
- 55 842 ÷ 2 = 27 921 + 0;
- 27 921 ÷ 2 = 13 960 + 1;
- 13 960 ÷ 2 = 6 980 + 0;
- 6 980 ÷ 2 = 3 490 + 0;
- 3 490 ÷ 2 = 1 745 + 0;
- 1 745 ÷ 2 = 872 + 1;
- 872 ÷ 2 = 436 + 0;
- 436 ÷ 2 = 218 + 0;
- 218 ÷ 2 = 109 + 0;
- 109 ÷ 2 = 54 + 1;
- 54 ÷ 2 = 27 + 0;
- 27 ÷ 2 = 13 + 1;
- 13 ÷ 2 = 6 + 1;
- 6 ÷ 2 = 3 + 0;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
223 370(10) = 11 0110 1000 1000 1010(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 18.
A signed binary's bit length must be equal to a power of 2, as of:
21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
The first bit (the leftmost) is reserved for the sign:
0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 18,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 32.
4. Get the positive binary computer representation on 32 bits (4 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 32:
Number 223 370(10), a signed integer number (with sign),
converted from decimal system (from base 10)
and written as a signed binary (in base 2):
223 370(10) = 0000 0000 0000 0011 0110 1000 1000 1010
Spaces were used to group digits: for binary, by 4, for decimal, by 3.